Hamilton’s principle for dynamic systems is adapted to describe the coupled response of a confined acoustic domain and an elastic structure that forms part or all of the boundary. A key part of the modified principle is the treatment of the surface traction as a Lagrange multiplier function that enforces continuity conditions at the fluid-solid interface. The structural displacement, fluid velocity potential, and traction are represented by Ritz series, where the usage of the velocity potential as the state variable for the fluid assures that the flow is irrotational. Designation of the coefficients of the potential function series as generalized velocities leads to corresponding series representations of the particle velocity, displacement, and pressure in the fluid, which in turn leads to descriptions of the mechanical energies and virtual work. Application of the calculus of variations to Hamilton’s principle yields linear differential-algebraic equations whose form is identical to those governing mechanical systems that are subject to nonholonomic kinematic constraints. Criteria for selection of basis functions for the various Ritz series are illustrated with an example of a rectangular cavity bounded on one side by an elastic plate and conditions that change discontinuously on other sides.

1.
Brenan
,
K. E.
,
Campbell
,
S. L.
, and
Petzold
,
L. R.
(
1989
).
Numerical Solutions of Initial-Value Problems in Differential-Algebraic Equations
(
Elsevier
,
New York
).
2.
Chen
,
P. T.
(
1996
). “
Variational formulation of interior cavity frequencies for spheroidal bodies
,”
J. Acoust. Soc. Am.
100
,
2980
2988
.
3.
Chen
,
P. T.
, and
Ginsberg
,
J. H.
(
1993
). “
Variational formulation of acoustic radiation from submerged spheroidal shells
,”
J. Acoust. Soc. Am.
94
,
221
233
.
4.
Chen
,
P. T.
, and
Ginsberg
,
J. H.
(
1995
). “
Complex power, reciprocity, and radiation modes for submerged bodies
,”
J. Acoust. Soc. Am.
98
,
3343
3351
.
5.
Courant
,
R.
(
1943
). “
Variational methods for the solution of problems of equilibrium and vibrations
,”
Bull. Am. Math. Soc.
49
,
1
23
.
6.
Dowell
,
E. H.
,
Gorman
,
G. F.
, and
Smith
,
D. A.
(
1977
). “
Acoustoelasticity: General theory, acoustic natural modes and forced response to sinusoidal excitation, including comparisons with experiment
,”
J. Sound Vib.
52
,
519
542
.
7.
Dowell
,
E. H.
, and
Voss
,
H. M.
(
1963
). “
The effect of a cavity on panel vibration
,”
AIAA J.
1
,
476
477
.
8.
Escalante
,
M. R.
,
Rosales
,
M. B.
, and
Filipich
,
C. P.
(
2004
). “
Natural frequencies of thin rectangular plates with partial intermediate supports
,”
Lat. Am. Appl. Res.
34
,
217
224
.
9.
Franco
,
F.
, and
Cunefare
,
K. A.
(
2001
). “
The surface variational principle applied to an acoustic cavity
,”
J. Acoust. Soc. Am.
109
,
2797
2804
.
10.
Ginsberg
,
J. H.
(
2001
).
Mechanical and Structural Vibration
(
Wiley
,
New York
).
11.
Ginsberg
,
J. H.
(
2008
).
Engineering Dynamics
(
Cambridge University Press
,
New York
).
12.
Ginsberg
,
J. H.
(
2010
). “
On Dowell’s simplification for acoustic cavity-structure interaction and consistent alternatives
,”
J. Acoust. Soc. Am.
127
,
22
32
.
13.
Ginsberg
,
J. H.
,
Cunefare
,
K. A.
, and
Pham
,
H.
(
1995
). “
Spectral description of inertial effects in fluid-loaded plates
,”
ASME J. Vibr. Acoust.
117
,
206
212
.
14.
Ginsberg
,
J. H.
, and
Wu
,
K.
(
1998
). “
Nonaxisymmetric acoustic radiation and scattering from rigid bodies of revolution using the surface variational principle
,”
ASME J. Vib. Acoust.
120
,
95
103
.
40.
Gladwell
,
G. M. L.
(
1966
). “
A variational formulation of damped acousto-structural vibration problems
,”
J. Sound Vib.
4
,
172
186
.
15.
Greenwood
,
D. T.
(
2003
).
Advanced Dynamics
(
Cambridge University Press
,
New York
).
16.
Kim
,
H. -J.
, and
Ih
,
J. -G.
(
2006
). “
Rayleigh-Ritz approach for predicting the acoustic performance of lined rectangular plenum chambers
,”
J. Acoust. Soc. Am.
120
,
1859
1870
.
17.
Kitipornchai
,
S.
,
Xiang
,
Y.
, and
Liew
,
K. M.
(
1994
). “
Vibration analysis of corner supported Mindlin plates of arbitrary shape using Lagrange multipliers
,”
J. Sound Vib.
173
,
457
470
.
18.
Klein
,
L.
(
1977
). “
Vibrations of constrained plates by a Rayleigh-Ritz method using Lagrange multipliers
,”
Q. J. Mech. Appl. Math.
30
,
51
70
.
19.
Lyamshev
,
M.
(
1959
). “
A question in connection with the principle of reciprocity in acoustics
,”
Sov. Phys. Dokl.
4
,
405
409
.
20.
Magalhaes
,
M. D. C.
, and
Ferguson
,
N. S.
(
2005
). “
The development of component mode synthesis (CMS) for three-dimensional fluid-structure interaction
,”
J. Acoust. Soc. Am.
118
,
3679
3690
.
21.
Meirovitch
,
L.
(
1997
).
Principles and Techniques of Vibrations
(
Prentice-Hall
,
Upper Saddle River, NJ
).
22.
Mindlin
,
R. D.
, and
Goodman
,
L. E.
(
1950
). “
Beam vibrations with time-dependent boundary conditions
,”
ASME J. Appl. Mech.
17
,
377
380
.
23.
Morse
,
P. M.
, and
Ingard
,
K. U.
(
1968
).
Theoretical Acoustics
(
McGraw-Hill
,
New York
).
24.
Moussou
,
P.
(
2005
). “
A kinematic method for the computation of fluid-structure interaction systems
,”
J. Fluids Struct.
20
,
643
658
.
25.
Pierce
,
A. D.
(
1987
). “
Stationary variational expressions for radiated and scattered acoustic power and related quantities
,”
IEEE J. Ocean. Eng.
12
,
404
411
.
26.
Pierce
,
A. D.
(
1993
) “
Variational formulations in acoustic radiation and scattering
,” in
Underwater Scattering and Radiation
, edited by
A. D.
Pierce
and
R. N.
Thurston
, (
Academic
,
San Diego, CA
).
27.
Rayleigh
,
J. W. S.
(
1873
). “
Some general theorems relating to vibrations
,”
Proc. London Math. Soc.
4
,
357
368
.
28.
Rayleigh
,
J. W. S.
(
1945
).
The Theory of Sound
, (
Dover
,
New York
), Vol.
1
, 2nd ed., pp.
109
112
.
29.
Ritz
,
W.
(
1908
). “
Über eine neue methode zur lösung gewisser variationsprobleme der mathematischen physik (On a new method for solving some variational problems of mathematical physics)
,”
J. Reine Angew. Math.
1
,
1
61
.
30.
Ritz
,
W.
(
1909
). “
Theorie der transversalschwingungen einer quadratische platte mit freien randern (Theory of transverse vibration of a rectangular plate with free edges)
,”
Ann. Phys.
333
,
737
786
.
31.
Shepard
,
W. S.
, Jr.
, and
Cunefare
,
K. A.
(
1997
). “
Sensitivity of structural acoustic response to attachment feature scales
,”
J. Acoust. Soc. Am.
102
,
1612
1619
.
32.
Shepard
,
W. S.
, Jr.
, and
Cunefare
,
K. A.
(
2001
). “
The influence of substructure modeling on the structural-acoustic response of a plate system
,”
J. Acoust. Soc. Am.
109
,
1448
1455
.
33.
Soize
,
C.
(
1998
). “
Reduced models in the medium-frequency range for general external structural-acoustic systems
,”
J. Acoust. Soc. Am.
103
,
3393
3406
.
34.
Soize
,
C.
(
1999
). “
Reduced models for structures in the medium-frequency range coupled with internal acoustic cavities
,”
J. Acoust. Soc. Am.
106
,
3362
3374
.
35.
Tiersten
,
H. F.
(
2001
). “
A derivation of two-dimensional equations for the vibration ofelectroded piezoelectric plates using an unrestricted thickness expansion of the electric potential
,” in
Proceedings of the 2001 IEEE International Frequency Control Symposium and PDA Exhibition
,
571
579
.
36.
Venkatesham
,
B.
,
Tiwari
,
M.
, and
Munjal
,
M. L.
(
2008
). “
Analytical prediction of the breakout noise from a rectangular cavity with one compliant wall
,”
J. Acoust. Soc. Am.
124
,
2952
2962
.
37.
Weinstock
,
R.
(
1974
).
Calculus of Variations
(
Dover
,
New York
).
38.
Zampolli
,
M.
(
2001
). “
Acoustical problems associated with the design of MEMS fluidic devices
,” Ph. D. thesis,
Boston University
, Cambridge, MA.
39.
Zampolli
,
M.
,
Pierce
,
A. D.
, and
Cleveland
,
R. O.
(
2000
). “
Variational model for a MEMS waveguide of varying cross-section
,” in
Proceedings of the 17th International Congress on Acoustics
, Rome, Italy.
You do not currently have access to this content.