The purpose of this study was to examine the characteristics of wind noise at the output of in-the-ear, in-the-canal, and completely-in-the-canal hearing aids. The hearing aids were programed to have linear amplification with matching flat frequency responses for directional (DIR) and omnidirectional (OMNI) microphones. The microphone output was then recorded in a quiet wind tunnel when the Knowles electronic manikin for acoustic research (KEMAR) head was turned from 0° to 360°. The overall, 125, 500, and 2000 Hz one-third octave band flow noise levels were calculated and plotted in polar patterns. Correlation coefficients, average differences, and level differences between DIR and OMNI were also calculated. Flow noise levels were the highest when KEMAR was facing the direction of the flow and angles between 190° and 250°. The noise levels were the lowest when the hearing aids were facing the direction of the flow. The polar patterns of DIR and OMNI had similar shapes and DIR generally had higher levels than OMNI. DIR, however, could have lower levels than OMNI in some angles because of its capability to reduce noise in the far field. Comparisons of polar characteristics with behind-the-ear hearing aids, and clinical and engineering design applications of current results are discussed.

1.
Amlani
,
A. M.
(
2001
). “
Efficacy of directional microphone hearing aids: A meta-analytic perspective
,”
J. Am. Acad. Audiol.
12
,
202
214
.
2.
Barlett
,
B.
, and
Barlette
,
J.
(
2001
).
Practical Recording Techniques
, 3rd ed. (
Focal Press
,
Burlington, MA
).
3.
Bauer
,
B. B.
(
1941
). “
Uniphase unidirectional microphones
,”
J. Acoust. Soc. Am.
13
,
41
45
.
4.
Baumhaur
,
J. C.
, and
Marcus
,
L. A.
(
1997
). “
Noise cancelling gradient microphone assembly
,” U.S. Patent No. 438826.
5.
Beard
,
J.
, and
Nepomuceno
,
H.
(
2001
). “
Wind noise levels for an ITE hearing aid
,” Knowles Engineering Report No. 128, Revision A, Knowles Electronics, Itasca, IL.
6.
Bentler
,
R. A.
,
Tubbs
,
J. L.
,
Egge
,
J. L. M.
,
Flamme
,
G. A.
, and
Dittberner
,
A. B.
(
2004
). “
Evaluation of an adaptive directional system in a DSP hearing aid
,”
Am. J. Audiol.
13
,
73
79
.
7.
Brown
,
D. V.
, and
Mongeau
,
L. M.
(
1995
). “
The design, construction, and validation of a small, low-speed, quiet wind tunnel with application to noise from the flow over a cavity
,” Internal Report Nos. 204 and HL95-9, Herrick Laboratories, Purdue University, West Lafayette, IN.
8.
Burkhard
,
M. D.
, and
Sachs
,
R. M.
(
1975
). “
Anthopometric manikin for acoustic research
,”
J. Acoust. Soc. Am.
58
,
214
222
.
9.
Carlson
,
E.
, and
Killon
,
M.
(
1974
). “
Subminiature directional microphones
,”
J. Audio Eng. Soc.
22
,
92
96
.
10.
Chung
,
K.
(
2004
). “
Challenges and recent developments in hearing aids Part I: Speech understanding in noise, microphone technologies and noise reduction algorithms
,”
Trends Amplif.
8
,
83
124
.
11.
Chung
,
K.
,
Mongeau
,
L.
, and
McKibben
,
N.
(
2009
). “
Wind noise in hearing aids with directional and omnidirectional microphones: Polar characteristics of behind-the-ear hearing aids
,”
J. Acoust. Soc. Am.
125
,
2243
59
.
12.
Chung
,
K.
,
Zeng
,
F. -G.
, and
Acker
,
K. N.
(
2006
). “
Effects of directional microphone and adaptive multichannel noise reduction algorithm on cochlear implant performance
,”
J. Acoust. Soc. Am.
120
,
2216
2227
.
13.
Chung
,
K.
,
Zeng
,
F. -G.
, and
Waltzman
,
S.
(
2004
). “
Utilizing hearing aid technologies as pre-processors to enhance cochlear implant performance
,”
Cochlear Implants Int.
5
,
192
195
.
14.
Dillon
,
H.
(
2001
).
Hearing Aids
(
Thieme
,
New York
).
15.
Eargle
,
J.
(
2004
).
The Microphone Handbook
, 2nd ed. (
Elsevier
,
New York
/
Focal Press
,
Burlington, MA
).
16.
Fortune
,
T.
, and
Preves
,
D.
(
1994
). “
Effects of CIC, ITC, and ITE microphone placement on the amplification of wind noise
,”
Hear. J.
47
,
23
27
.
17.
Gibson
,
B.
(
2007
).
The Ultimate Live Sound Operator’s Handbook
(
Hal Leonard
,
New York
).
18.
Grenner
,
J.
,
Abrahamsson
,
U.
,
Jernberg
,
B.
, and
Lindblad
,
S.
(
2000
). “
A comparison of wind noise in four hearing instruments
,”
Scand. Audiol.
29
,
171
174
.
19.
Hawkins
,
D. B.
, and
Yacullo
,
W. S.
(
1984
). “
Signal-to-noise ratio advantage of binaural hearing aids and directional microphones under different levels of reverberation
,”
J. Speech Hear. Disord.
49
,
278
286
.
20.
Killion
,
M. C.
,
Schulien
,
R.
,
Christensen
,
L.
,
Fabry
,
D.
,
Revit
,
L.
,
Niquette
,
P.
, and
Chung
,
K.
(
1998
). “
Real world performance of an ITE directional microphone
,”
Hear. J.
51
,
24
38
.
22.
Kochkin
,
S.
(
2005
). “
MarkeTrak VII: Customer satisfaction with hearing instruments in the digital age
,”
Hear. J.
38
,
30
37
.
24.
National Climate Data Center
(
2006
). “
Minimum wind noise
,” http://www.ncdc.noaa.gov/oa/climate/online/ccd/avgwind.html (Last viewed 6/1/2006).
26.
National Committee for Fluid Mechanics Films
(
1972
).
Illustrated Experiments in Fluid Mechanics: The NCFMF Book of Film Notes
, 2nd ed. (
MIT
,
Cambridge, MA
).
27.
Reedyk
,
C. W.
(
1973
). “
Noise-cancelling electret microphone for light weight telephones
,”
J. Acoust. Soc. Am.
53
,
1609
1615
.
28.
Ricketts
,
T. A.
(
2000
). “
Impact of noise source configuration on directional hearing aid benefit and performance
,”
Ear Hear.
21
,
194
205
.
29.
Ricketts
,
T. A.
(
2001
). “
Directional hearing aids
,”
Trends Amplif.
5
,
139
176
.
30.
Ricketts
,
T. A.
, and
Dhar
,
S.
(
1999
). “
Aided benefit across directional and omni-directional hearing aid microphones for behind-the-ear hearing aids
,”
J. Am. Acad. Audiol.
10
,
180
189
.
31.
Ricketts
,
T. A.
, and
Henry
,
P.
(
2002
). “
Evaluation of an adaptive directional-microphone hearing aid
,”
Int. J. Audiol.
41
,
100
112
.
33.
Spriet
,
A.
,
Van Deun
,
L.
,
Eftaxiadis
,
K.
,
Laneau
,
J.
,
Moonen
,
M.
,
van Dijk
,
B.
,
van Wieringen
,
A.
, and
Wouters
,
J.
(
2007
). “
Speech understanding in background noise with the two-microphone adaptive beamformer BEAM™ in the Nucleus Freedom™ cochlear implant system
,”
Ear Hear.
28
,
62
72
.
34.
Studebaker
,
G.
,
Cox
,
R.
, and
Formby
,
C.
(
1980
).
Acoustical Factors Affecting Hearing Aid Performance: The Effect of Environment on the Directional Performance of Head-Worn Hearing Aids
(
University Park Press
,
Baltimore, MD
).
35.
Thompson
,
S.
(
2002
).
Microphones, Receivers, and Telecoils in Hearing Aids: Standards, Options, and Limitations
, edited by
M.
Valente
(
Thiemes
,
New York
).
36.
Thompson
,
S.
, and
Dillon
,
H.
(
2002
).
Wind Noise in Hearing Aids
, presented at the
American Academy of Audiology Convention
, Philadelphia, PA.
37.
Valente
,
M.
(
1999
). “
Use of microphone technology to improve user performance in noise
,”
Trends Amplif.
4
,
112
135
.
38.
Valente
,
M.
,
Fabry
,
D. A.
, and
Potts
,
L. G.
(
1995
). “
Recognition of speech in noise with hearing aids using dual microphones
,”
J. Am. Acad. Audiol.
6
,
440
9
.
39.
Valente
,
M.
,
Schuchman
,
G.
,
Potts
,
L. G.
, and
Beck
,
L. B.
(
2000
). “
Performance of dual-microphone in-the-ear hearing aids
,”
J. Am. Acad. Audiol.
11
,
181
189
.
40.
Walden
,
T. C.
, and
Walden
,
B. E.
(
2005
). “
Unilateral versus bilateral amplification for adults with impaired hearing
,”
J. Am. Acad. Audiol.
16
,
574
84
.
You do not currently have access to this content.