A fully experimental modeling technique and a design optimization procedure are presented in this paper for push-pull electret loudspeakers. Conventional electrical impedance-based parameter identification methods are not completely applicable to electret speakers due to the extremely weak electromechanical coupling. This prompts the development of an experimental technique for identifying the electroacoustic parameters of the electret speakers. Mechanical parameters are identified from the membrane velocity measured using a laser vibrometer. The voltage-force conversion factor and the motional impedance are estimated, with the aid of a test-box method. This experimentally identified model serves as the simulation platform for predicting the response of the electret loudspeaker and optimizing the design. Optimal parameters are calculated by using the simulated annealing (SA) algorithm to fulfill various design goals and constraints. Either the comprehensive search for various parameters or the simple search for the optimal gap distance can be conducted by this SA procedure. The results reveal that the optimized design has effectively enhanced the performance of the electret loudspeaker.

1.
P. J.
Baxandall
, “
Electrostatic loudspeakers
,” in
Loudspeaker and Headphone Handbook
, 3rd ed., edited by
J.
Borwick
(
Focal
,
Oxford
,
2001
).
2.
F. V.
Hunt
,
Electroacoustics: The Analysis of Transduction, and Its Historical Background
(
American Institute of Physics
,
Melville, NY
,
1982
).
3.
T.
Mellow
and
L.
Kärkkäinen
, “
On the forces in single-ended and push-pull electret transducers
,”
J. Acoust. Soc. Am.
124
,
1497
1504
(
2008
).
4.
J.
Lekkala
and
M.
Paajanen
, “
EMFi—New electret material for sensors and actuators
,”
IEEE Tenth International Symposium on Electrets
, Athens, Greece (
1999
).
5.
M.
Paajanen
,
J.
Lekkala
, and
K.
Kirjavainen
, “
Electromechanical film (EMFi)—A new multipurpose electret material
,”
Sens. Actuators, A
84
,
95
102
(
2000
).
6.
Y.
Cao
,
Z.
Xia
,
Q.
Lin
,
J.
Shen
,
L.
Chen
, and
B.
Zhou
, “
Study of porous dielectrics as electret materials
,”
IEEE Trans. Dielectr. Electr. Insul.
5
,
58
62
(
1998
).
7.
D. M.
Chiang
,
W. L.
Liu
,
J. L.
Chen
, and
R.
Susuki
, “
PALS and SPM/EFM investigation of charged nanoporous electret films
,”
Chem. Phys. Lett.
412
,
50
54
(
2005
).
8.
D. M.
Chiang
and
J. L.
Chen
, “
A novel flexible loudspeaker driven by an electret diaphragm
,”
AES 121st Convention
, San Francisco, CA (
2006
).
9.
T.
Mellow
and
L.
Kärkkäinen
, “
On the sound field of a circular membrane in free space and an infinite baffle
,”
J. Acoust. Soc. Am.
120
,
2460
2477
(
2006
).
10.
M. R.
Bai
,
R. L.
Chen
, and
C. J.
Wang
, “
Electroacoustic analysis of an electret loudspeaker using combined finite-element and lumped-parameter models
,”
J. Acoust. Soc. Am.
125
,
3632
3640
(
2009
).
11.
H.
Olson
,
Acoustical Engineering
(
Van Nostrand
,
New York
,
1957
), reprinted by Professional Audio Journals (Philadelphia, PA, 1991).
12.
L. L.
Beranek
,
Acoustics
(
Acoustical Society of America
,
Melville, NY
,
1996
).
13.
W. M.
Leach
, Jr.
,
Introduction to Electroacoustics and Audio Amplifier Design
(
Kendall-Hunt
,
Dubuque, IA
,
2003
).
14.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
, “
Equations of state calculations by fast computing machines
,”
J. Chem. Phys.
21
,
1087
1092
(
1953
).
15.
Quantum Annealing and Related Optimization Methods
, edited by
A.
Das
and
B. K.
Chakrabarti
(
Springer
,
Heidelberg
,
2005
).
16.
J.
de Vicente
,
J.
Lanchares
, and
R.
Hermida
, “
Placement by thermodynamic simulated annealing
,”
Phys. Lett. A
317
,
415
423
(
2003
).
17.
Audio Engineering Society Inc.
,
AES Recommended Practice Specification of Loudspeaker Components Used in Professional Audio and Sound Reinforcement
, AES2-1984, NY (
2003
).
18.
M. R.
Bai
and
R. L.
Chen
, “
Optimal design of loudspeaker systems based on sequential quadratic programming (SQP)
,”
J. Audio Eng. Soc.
55
,
44
54
(
2007
).
You do not currently have access to this content.