A method for the measurement of the phase and group velocities of guided acoustic waves is presented. For this purpose, a unique capability of a self-developed double-pulsed TV holography system to create movies of the propagation of guided acoustic wavetrains is used. Thereby, the experimental visualization of the evolution of Lamb and Rayleigh wavetrains in aluminum plates is shown, including several movies that illustrate different dispersive behaviors. Each movie shows the propagation of a narrowband wavetrain with a central frequency in the order of 1 MHz that consists of a carrier moving with the phase velocity, modulated by an envelope moving with the group velocity. Each snapshot is a two-dimensional map of the instantaneous out-of-plane displacement field of the surface points of the plate, with amplitudes in the order of several nanometers, acquired with the double-pulsed TV holography system. Then, by repeating the acquisition with successively increasing delays between the generation and detection instants, a sequence of maps is obtained from which a movie is composed. The phase and group velocities of the waves are accurately measured from the movies, yielding values that match well with the reference values for the same plates obtained from independent measurements.

1.
L.
Brillouin
,
Wave Propagation and Group Velocity
(
Academic
,
New York
,
1960
).
2.
M. A.
Biot
, “
General theorems on the equivalence of group velocity and energy transport
,”
Phys. Rev.
105
,
1129
1137
(
1957
).
3.
I. A.
Viktorov
,
Rayleigh and Lamb Waves
(
Plenum
,
New York
,
1967
).
4.
J. L.
Deán
,
C.
Trillo
,
A. F.
Doval
, and
J. L.
Fernández
, “
Determination of thickness and elastic constants of aluminum plates from full-field wavelength measurements of single-mode narrowband Lamb waves
,”
J. Acoust. Soc. Am.
124
,
1477
1489
(
2008
).
5.
K.
Kobayashi
, “
Relationship between speed of Lamb wave and measurement error on distance
,”
Jpn. J. Appl. Phys.
33
,
3115
3120
(
1994
).
6.
C. W.
Chan
and
P.
Cawley
, “
Lamb waves in highly attenuative plastic plates
,”
J. Acoust. Soc. Am.
104
,
874
881
(
1998
).
7.
T. W.
Murray
,
K. C.
Baldwin
, and
J. W.
Wagner
, “
Laser ultrasonic chirp sources for low damage and high detectability without loss of temporal resolution
,”
J. Acoust. Soc. Am.
102
,
2742
2746
(
1997
).
8.
J. D. N.
Cheeke
,
X.
Li
, and
Z.
Wang
, “
Observation of flexural Lamb waves (A0 mode) on water-filled cylindrical shells
,”
J. Acoust. Soc. Am.
104
,
3678
3680
(
1998
).
9.
M.
Niethammer
,
L. J.
Jacobs
,
J.
Qu
, and
J.
Jarzynski
, “
Time-frequency representations of Lamb waves
,”
J. Acoust. Soc. Am.
109
,
1841
1847
(
2001
).
10.
Y.
Hayashi
,
S.
Ogawa
,
H.
Cho
, and
M.
Takemoto
, “
Non-contact estimation of thickness and elastic properties of metallic foils by the wavelet transform of laser-generated Lamb waves
,”
NDT Int.
32
,
21
27
(
1999
).
11.
H.
Kwun
and
K. A.
Bartels
, “
Experimental observation of elastic-wave dispersion in bounded solids of various configurations
,”
J. Acoust. Soc. Am.
99
,
962
968
(
1996
).
12.
W. H.
Prosser
,
M. D.
Seale
, and
B. T.
Smith
, “
Time-frequency analysis of the dispersion of Lamb modes
,”
J. Acoust. Soc. Am.
105
,
2669
2676
(
1999
).
13.
A.
Neubrand
and
P.
Hess
, “
Laser generation and detection of surface acoustic waves: Elastic properties of surface layers
,”
J. Acoust. Soc. Am.
71
,
227
238
(
1992
).
14.
A. S.
Murfin
and
R. J.
Dewhurst
, “
Estimation of wall thinning in mild steel using laser ultrasound Lamb waves and a non-steady-state photo-EMF detector
,”
Ultrasonics
40
,
777
781
(
2002
).
15.
M. G.
Somekh
,
M.
Liu
,
H. P.
Ho
, and
C. W.
See
, “
An accurate non-contacting laser based system for surface wave velocity measurement
,”
Meas. Sci. Technol.
6
,
1329
1337
(
1995
).
16.
D.
Alleyne
and
P.
Cawley
, “
A two-dimensional Fourier transform method for the measurement of propagating multimode signals
,”
J. Acoust. Soc. Am.
89
,
1159
1168
(
1991
).
17.
Y.
Shi
,
S. -C.
Wooh
, and
M.
Orwat
, “
Laser-ultrasonic generation of Lamb waves in the reaction force range
,”
Ultrasonics
41
,
623
633
(
2003
).
18.
K. L.
Telschow
and
V. A.
Deason
, “
Imaging anisotropic elastic properties of an orthotropic paper sheet using photorefractive dynamic holography
,”
Ultrasonics
40
,
1025
1035
(
2002
).
19.
T.
Makkonen
,
T.
Pensala
,
J.
Vartiainen
,
J. V.
Knuuttila
,
J.
Kaitila
, and
M. M.
Salomaa
, “
Estimating materials parameters in thin-film BAW resonators using measured dispersion curves
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
51
,
42
51
(
2004
).
20.
L.
Boeckx
,
P.
Leclaire
,
P.
Khurana
,
C.
Glorieux
,
W.
Lauriks
, and
J. F.
Allard
, “
Guided elastic waves in porous materials saturated by air under Lamb conditions
,”
J. Appl. Phys.
97
,
094911
(
2005
).
21.
M.
Lematre
,
Y.
Benmehrez
,
G.
Bourse
,
J. W.
Xu
, and
M.
Ourak
, “
Determination of elastic parameters in isotropic plates by using acoustic microscopy measurements and an optimization method
,”
NDT Int.
35
,
493
502
(
2002
).
22.
Y. -C.
Lee
and
S. -W.
Cheng
, “
Measuring Lamb wave dispersion curves of a bi-layered plate and its application on material characterization of coating
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
48
,
830
837
(
2001
).
23.
D. C.
Auth
and
W. G.
Mayer
, “
Scattering of light reflected from acoustic surface waves in isotropic solids
,”
J. Appl. Phys.
38
,
5138
5140
(
1967
).
24.
M.
Ohki
,
M.
Inoue
, and
K.
Toda
, “
Measurement of leaky Lamb wave velocity using Raman–Nath diffraction
,”
Jpn. J. Appl. Phys.
36
,
3171
3175
(
1997
).
25.
Y. H.
Kim
,
S. -J.
Song
,
S. -D.
Kwon
,
Y. -M.
Cheong
, and
H. -K.
Jung
, “
Determination of ultrasonic wave velocities and phase velocity dispersion curves of an Inconel 600 plate using resonant ultrasound spectroscopy and leaky Lamb waves
,”
Ultrasonics
42
,
551
555
(
2004
).
26.
X.
Chen
and
M.
Wan
, “
Parameter measurement of the cylindrically curved thin layer using low-frequency circumferential Lamb waves
,”
Ultrasonics
43
,
357
364
(
2005
).
27.
M.
Murase
,
K.
Kawashima
, and
O.
Yoshida
, “
Group velocity measurement of various Lamb waves with two-beam laser interferometer
,”
Jpn. J. Appl. Phys.
40
,
3595
3598
(
2001
).
28.
J. L.
Fernández
,
A. F.
Doval
,
C.
Trillo
,
J. L.
Deán
, and
J. C.
López
, “
Video ultrasonics by pulsed TV holography: A new capability for non-destructive testing of shell structures
,”
Int. J. Optomechatronics
1
,
122
153
(
2007
).
29.
K. F.
Graff
,
Wave Motion in Elastic Solids
(
Dover
,
New York
,
1975
).
30.
C.
Trillo
,
D.
Cernadas
,
A. F.
Doval
,
C.
López
,
B. V.
Dorrío
, and
J. L.
Fernández
, “
Detection of transient surface acoustic waves of nanometric amplitude with double-pulsed TV holography
,”
Appl. Opt.
42
,
1228
1235
(
2003
).
31.
C.
Trillo
,
A. F.
Doval
,
D.
Cernadas
,
O.
López
,
J. C.
López
,
B. V.
Dorrío
,
J. L.
Fernández
, and
M.
Pérez-Amor
, “
Measurement of the complex amplitude of transient surface acoustic waves using double-pulsed TV holography and a two-stage spatial Fourier transform method
,”
Meas. Sci. Technol.
14
,
2127
2134
(
2003
).
32.
C.
Trillo
and
A. F.
Doval
, “
Spatiotemporal Fourier transform method for the measurement of narrowband ultrasonic surface acoustic waves with TV holography
,”
Proc. SPIE
,
6341
,
63410M
(
2006
).
33.
See supplementary material at http://dx.doi.org/10.1121/1.3327795 Document No. E-JASMAN-127-035004 for downloadable files containing the four video files showing the wavetrain propagation for each mode considered in the experiment. For more information, see http://www.aip.org/pubservs/epaps.html.
34.
A. F.
Doval
, “
A systematic approach to TV holography
,”
Meas. Sci. Technol.
11
,
R1
R36
(
2000
).

Supplementary Material

You do not currently have access to this content.