Recently, a technique has been developed to image seabed layers using the ocean ambient noise field as the sound source. This so called passive fathometer technique exploits the naturally occurring acoustic sounds generated on the sea-surface, primarily from breaking waves. The method is based on the cross-correlation of noise from the ocean surface with its echo from the seabed, which recovers travel times to significant seabed reflectors. To limit averaging time and make this practical, beamforming is used with a vertical array of hydrophones to reduce interference from horizontally propagating noise. The initial development used conventional beamforming, but significant improvements have been realized using adaptive techniques. In this paper, adaptive methods for this process are described and applied to several data sets to demonstrate improvements possible as compared to conventional processing.

1.
M.
Siderius
,
C. H.
Harrison
, and
M. B.
Porter
, “
A passive fathometer technique for imaging seabed layering using ambient noise
,”
J. Acoust. Soc. Am.
120
,
1315
1323
(
2006
).
2.
C. H.
Harrison
, “
Sub-bottom profiling using ocean ambient noise
,”
J. Acoust. Soc. Am.
115
,
1505
1515
(
2004
).
3.
C. H.
Harrison
, “
Performance and limitations of spectral factorization for ambient noise sub-bottom profiling
,”
J. Acoust. Soc. Am.
118
,
2913
2923
(
2005
).
4.
M. J.
Buckingham
and
S. A. S.
Jones
, “
A new shallow-ocean technique for determining the critical angle of the seabed from the vertical directionality of the ambient noise in the water column
,”
J. Acoust. Soc. Am.
81
,
938
946
(
1987
).
5.
C. H.
Harrison
and
D. G.
Simons
, “
Geoacoustic inversion of ambient noise: A simple method
,”
J. Acoust. Soc. Am.
112
,
1377
1389
(
2002
).
6.
C. H.
Harrison
and
M.
Siderius
, “
Bottom profiling by correlating beam-steered noise sequences
,”
J. Acoust. Soc. Am.
123
,
1282
1296
(
2008
).
7.
S. L.
Means
and
M.
Siderius
, “
Effects of sea-surface conditions on passive fathometry and bottom characterization
,”
J. Acoust. Soc. Am.
126
,
2234
2241
(
2009
).
8.
P.
Gerstoft
,
W. S.
Hodgkiss
,
M.
Siderius
,
C. -F.
Huang
, and
C. H.
Harrison
, “
Passive fathometer processing
,”
J. Acoust. Soc. Am.
123
,
1297
1305
(
2008
).
9.
C. H.
Harrison
, “
Anomalous signed passive fathometer impulse response when using adaptive beam forming
,”
J. Acoust. Soc. Am.
125
,
3511
3513
(
2009
).
10.
J.
Traer
,
P.
Gerstoft
,
H.
Song
, and
W. S.
Hodgkiss
, “
On the sign of the adaptive passive fathometer impulse response
,”
J. Acoust. Soc. Am.
126
,
1657
1658
(
2009
).
11.
A.
Frantzis
, “
Does acoustic testing strand whales?
,”
Nature (London)
392
,
29
(
1998
).
12.
J.
Rickett
and
J.
Claerbout
, “
Acoustic daylight imaging via spectral factorization: Helioseismology and reservoir monitoring
,”
The Leading Edge
18
,
957
960
(
1999
).
13.
R. L.
Weaver
and
O. I.
Lobkis
, “
Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies
,”
Phys. Rev. Lett.
87
,
134301
–134304 (
2001
).
14.
O. I.
Lobkis
and
R. L.
Weaver
, “
On the emergence of the Green’s function in the correlations of a diffuse field
,”
J. Acoust. Soc. Am.
110
,
3011
3017
(
2001
).
15.
P.
Roux
,
W. A.
Kuperman
, and the
NPAL Group
, “
Extracting coherent wave fronts from acoustic ambient noise in the ocean
,”
J. Acoust. Soc. Am.
116
,
1995
2003
(
2004
).
16.
P.
Roux
,
K. G.
Sabra
, and
W. A.
Kuperman
, “
Ambient noise cross correlation in free space: Theoretical approach
,”
J. Acoust. Soc. Am.
117
,
79
83
(
2005
).
17.
L. A.
Brooks
and
P.
Gerstoft
, “
Green’s function approximation from cross-correlations of 20–100 Hz noise during a tropical storm
,”
J. Acoust. Soc. Am.
125
,
723
734
(
2009
).
18.
K. G.
Sabra
,
P.
Roux
, and
W. A.
Kuperman
, “
Arrival-time structure of the time-averaged ambient noise cross-correlation function in an oceanic waveguide
,”
J. Acoust. Soc. Am.
117
,
164
174
(
2005
).
19.
K. G.
Sabra
,
P.
Roux
, and
W. A.
Kuperman
, “
Emergence rate of the time-domain Green’s function from the ambient noise cross-correlation function
,”
J. Acoust. Soc. Am.
118
,
3524
3530
(
2005
).
20.
O. A.
Godin
, “
Recovering the acoustic Green’s function from ambient noise cross correlation in an inhomogeneous moving medium
,”
Phys. Rev. Lett.
97
,
054301
(
2006
).
21.
M.
Siderius
,
P. L.
Nielsen
, and
P.
Gerstoft
, “
Range-dependent seabed characterization by inversion of acoustic data from a towed receiver array
,”
J. Acoust. Soc. Am.
112
,
1523
1535
(
2002
).
22.
H. L.
Van Trees
,
Detection, Estimation, and Modulation Theory: Part IV: Optimum Array Processing
(
Wiley
,
New York
,
2002
).
23.
W. S.
Burdic
,
Underwater Acoustic System Analysis
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1984
).
24.
H. C.
Song
,
W. A.
Kuperman
,
W. S.
Hodgkiss
,
P.
Gerstoft
, and
J. S.
Kim
, “
Null broadening with snapshot-deficient covariance matrices in passive sonar
,”
IEEE J. Ocean. Eng.
28
,
250
261
(
2003
).
25.
H.
Cox
,
R. M.
Zeskind
, and
M. M.
Owen
, “
Robust adaptive beamforming
,”
IEEE Trans. Acoust., Speech, Signal Process.
35
,
1365
1376
(
1987
).
26.
C. W.
Holland
, “
Coupled scattering and reflection measurements in shallow water
,”
IEEE J. Ocean. Eng.
27
,
454
470
(
2002
).
You do not currently have access to this content.