A technique has been developed for incorporating adaptively beamformed (ABF) data into geoacoustic inversions and source localizations based on matched-field processing. Rather than adaptively adjusting matched-field weights, for this paper ABF processing is applied to construct subaperture beam data from which the inversions and localizations are derived. This application of ABF processing to inversion and localization is successfully demonstrated with data collected on a horizontal line array from a surface ship of opportunity source (SSOS). When measured data representing noise from one or more interfering sources at various levels are injected into the data collected from the SSOS, the inversion processing with ABF subaperture data is successful at interferer noise levels exceeding the SSOS levels by 1013dB and for which the inversion processing with conventionally beamformed data fails.

1.
H.
Cox
,
R. M.
Zeskind
, and
M. M.
Owen
, “
Robust adaptive beamforming
,”
IEEE Trans. Acoust., Speech, Signal Process.
35
,
1365
1376
(
1987
).
2.
T. R.
Messerschmitt
and
R. A.
Gramann
, “
Evaluation of the dominant mode rejection beamformer using reduced integration times
,”
IEEE J. Ocean. Eng.
22
,
385
392
(
1997
).
3.
T. M.
Redheendran
, “
Initial evaluation of the dominant mode rejection beamformer
,”
J. Acoust. Soc. Am.
104
,
1331
1344
(
1998
).
4.
N. O.
Booth
,
A. T.
Abawi
,
P. W.
Schey
, and
W. S.
Hodgkiss
, “
Detectability of low-level broad-band signals using adaptive matched-field processing with vertical aperture arrays
,”
IEEE J. Ocean. Eng.
25
,
296
313
(
2000
).
5.
A. B.
Baggeroer
,
W. A.
Kuperman
, and
H.
Schmidt
, “
Matched field processing: Source localization in correlated noise as an optimum parameter estimation problem
,”
J. Acoust. Soc. Am.
83
,
571
587
(
1988
).
6.
H.
Schmidt
,
A. B.
Baggeroer
,
W. A.
Kuperman
, and
E. K.
Scheer
, “
Environmentally tolerant beamforming for high-resolution match field processing: deterministic mismatch
,”
J. Acoust. Soc. Am.
88
,
1851
1862
(
1990
).
7.
C.
Soares
,
S. M.
Jesus
, and
E.
Coelho
, “
Environmental inversion using high-resolution matched-field processing
,”
J. Acoust. Soc. Am.
122
,
3391
3404
(
1997
).
8.
K.
Yoo
and
T. C.
Yang
, “
Adaptive matched beam processing for source localization
,”
J. Acoust. Soc. Am.
106
,
2127
(
1999
).
9.
S. A.
Stotts
, “
A robust spatial filtering technique for multisource localization and geoacoustic inversion
,”
J. Acoust. Soc. Am.
118
,
139
162
(
2005
).
10.
R. A.
Koch
and
D. P.
Knobles
, “
Geoacoustic inversion with ships as sources
,”
J. Acoust. Soc. Am.
117
,
626
637
(
2005
).
11.
R. B.
Newman
, “
Simultaneous inversion for source track and sediment parameter values from acoustic signals generated by a ship of opportunity in a soft sediment shallow water waveguide
,” MS thesis,
The University of Texas at Austin
(
2005
).
12.
S.
Stotts
and
B.
Hawkins
, “
Application of adaptive beamforming to geoacoustic inversion and source localization
,”
J. Acoust. Soc. Am.
118
,
1857
(
2005
).
13.
D. P.
Knobles
,
R. A.
Koch
,
L. A.
Thompson
, and
P. E.
Eisman
, “
Broadband sound propagation in shallow water and geoacoustic inversion
,”
J. Acoust. Soc. Am.
113
,
205
222
(
2003
).
14.
E. A.
Ritterman
, “
Geoacoustic inversion in multiple source environments
,” MS thesis,
The University of Texas at Austin
(
2004
).
15.
D. E.
Grant
,
J. H.
Gross
, and
M. Z.
Lawrence
, “
Cross-spectral matrix estimation effects on adaptive beamforming
,”
J. Acoust. Soc. Am.
98
,
517
524
(
1995
).
16.
S.
Kirkpatrick
,
C. D.
Gelatt
, Jr.
, and
M. P.
Vecchi
, “
Optimization by simulated annealing
,”
Science
220
,
671
680
(
1983
).
17.
W. L.
Goffe
,
G. D.
Ferrier
, and
J.
Rogers
, “
Global optimization of statistical functions with simulated annealing
,”
J. Econometr.
60
,
65
100
(
1994
).
18.
S. A.
Stotts
,
R. A.
Koch
,
S. M.
Joshi
,
V. T.
Nguyen
,
V. W.
Ferreri
, and
D. P.
Knobles
, “
Geoacoustic inversions of horizontal and vertical line array acoustic data from a surface ship source of opportunity
,”
IEEE J. Ocean. Eng.
In press (
2010
).
19.
R. A.
Koch
and
J. E.
LeMond
, Software requirements specification for the NAUTILUS model (Version 1.0), ARL-TL-EV-01-18, April (
2001
).
20.
R. A.
Koch
and
J. E.
LeMond
, Software test description for the NAUTILUS model (Version 1.0), ARL-TL-EV-01-19, April (
2001
).
21.
R. A.
Koch
and
J. E.
LeMond
, Software design description for the NAUTILUS model (Version 1.0), ARL-TL-EV-01-17, April (
2001
).
22.
R. B.
Newman
and
R. A.
Koch
, Software description for the NAUTILUS subroutine, ARL-TL-EV-03-09, April 18 (
2003
).
23.
S. A.
Stotts
,
D. P.
Knobles
,
R. A.
Koch
,
D. E.
Grant
,
K. C.
Focke
, and
A. J.
Cook
, “
Geoacoustic inversion in range-dependent ocean environments using a plane wave reflection coefficient approach
,”
J. Acoust. Soc. Am.
115
,
1078
1102
(
2004
).
24.
S. E.
Dosso
, “
Quantifying uncertainty in geoacoustic inversion. I. A fast Gibbs sampler approach
,”
J. Acoust. Soc. Am.
111
,
129
142
(
2002
).
25.
S. E.
Dosso
and
P. L.
Nielsen
, “
Quantifying uncertainty in geoacoustic inversion. II. Application to broadband, shallow-water data
,”
J. Acoust. Soc. Am.
111
,
143
159
(
2002
).
You do not currently have access to this content.