This paper considers multiple scattering of waves propagating in a non-lossy one-dimensional random medium with short- or long-range correlations. Using stochastic homogenization theory it is possible to show that pulse propagation is described by an effective deterministic fractional wave equation, which corresponds to an effective medium with a frequency-dependent attenuation that obeys a power law with an exponent between 0 and 2. The exponent is related to the Hurst parameter of the medium, which is a characteristic parameter of the correlation properties of the fluctuations of the random medium. Moreover the frequency-dependent attenuation is associated with a special frequency-dependent phase, which ensures that causality and Kramers–Kronig relations are satisfied. In the time domain the effective wave equation has the form of a linear integro-differential equation with a fractional derivative.

1.
M.
Asch
,
W.
Kohler
,
G.
Papanicolaou
,
M.
Postel
, and
B.
White
, “
Frequency content of randomly scattered signals
,”
SIAM Rev.
33
,
519
626
(
1991
).
2.
J. -P.
Fouque
,
J.
Garnier
,
G.
Papanicolaou
, and
K.
Sølna
,
Wave Propagation and Time Reversal in Randomly Layered Media
(
Springer
,
New York
,
2007
).
3.
A.
Ishimaru
,
Wave Propagation and Scattering in Random Media
(
Academic
,
New York
,
1978
).
4.
A.
Aubry
,
A.
Derode
, and
F.
Padilla
, “
Local measurements of the diffusion constant in multiple scattering media: Application to human trabecular bone imaging
,”
Appl. Phys. Lett.
92
,
124101
(
2008
).
5.
S.
Dolan
,
C.
Bean
, and
B.
Riollet
, “
The broad-band fractal nature of heterogeneity in the upper crust from petrophysical logs
,”
Geophys. J. Int.
132
,
489
507
(
1998
).
6.
M.
Sahimi
and
S. E.
Tajer
,
Phys. Rev. E
71
,
046301
(
2005
).
7.
S. M. V.
Allaei
,
M.
Sahimi
, and
M. R. R.
Tabar
, “
Propagation of acoustic waves as a probe for distinguishing heterogeneous media with short-range and long-range correlations
,”
J. Stat. Mech.: Theory Exp.
2008
,
P03016
1
P03016
28
.
8.
D. T.
Blackstock
, “
Generalized Burgers equations for plane waves
,”
J. Acoust. Soc. Am.
77
,
2050
2053
(
1985
).
9.
T. L.
Szabo
, “
Time domain wave equations for lossy media obeying a frequency power law
,”
J. Acoust. Soc. Am.
96
,
491
500
(
1994
).
10.
M.
Caputo
, “
Linear models of dissipation whose Q is almost frequency independent II
,”
Geophys. J. R. Astron. Soc.
1
,
529
539
(
1967
).
11.
M.
Caputo
and
F.
Mainardi
, “
A new dissipation model based on memory mechanism
,”
Pure Appl. Geophys.
91
,
134
147
(
1971
).
12.
T. L.
Szabo
and
J. R.
Wu
, “
A model for longitudinal and shear wave propagation in viscoelastic media
,”
J. Acoust. Soc. Am.
107
,
2437
2446
(
2000
).
13.
K.
Aki
and
P. G.
Richards
,
Quantitative Seismology
(
Freeman
,
San Francisco, CA
,
1980
), Vol.
1
, Chap. 5.
14.
T. E.
Gómez Álvarez-Arenas
,
F. R.
Montero de Espinosa
,
M.
Moner-Girona
,
E.
Rodriguez
,
A.
Roig
, and
E.
Molins
, “
Viscoelasticity of silica aerogels at ultrasonic frequencies
,”
Appl. Phys. Lett.
81
,
1198
1200
(
2002
).
15.
Physical Principles of Medical Ultrasonics
, edited by
C. R.
Hill
,
J. C.
Bamber
, and
G. R.
ter Haar
(
Wiley
,
Chichester
,
1986
), Chaps. 4 and 5.
16.
A. C.
Kibblewhite
, “
Attenuation of sound in marine sediments: A review with emphasis on new low-frequency data
,”
J. Acoust. Soc. Am.
86
,
716
738
(
1989
).
17.
W.
Chen
and
S.
Holm
, “
Modified Szabo’s wave equation models for lossy media obeying frequency power law
,”
J. Acoust. Soc. Am.
114
,
2570
2574
(
2003
).
18.
W.
Chen
and
S.
Holm
, “
Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency
,”
J. Acoust. Soc. Am.
115
,
1424
1430
(
2004
).
19.
S.
Gelinsky
,
S. A.
Shapiro
, and
T.
Müller
, “
Dynamic poroelasticity of thinly layered structure
,”
Int. J. Solids Struct.
35
,
4739
4751
(
1998
).
20.
A.
Hanyga
and
V. E.
Rok
, “
Wave propagation in micro-heterogeneous porous media: A model based on an integro-differential wave equation
,”
J. Acoust. Soc. Am.
107
,
2965
2972
(
2000
).
21.
N. V.
Sushilov
and
R. S. C.
Cobbold
, “
Frequency domain wave equation and its time-domain solutions in attenuating media
,”
J. Acoust. Soc. Am.
115
,
1431
1435
(
2004
).
22.
M. G.
Wismer
, “
Finite element analysis of broadband acoustic pulses through inhomogeneous media with power law attenuation
,”
J. Acoust. Soc. Am.
120
,
3493
3502
(
2006
).
23.
R.
Marty
and
K.
Sølna
, “
Acoustic waves in long-range random media
,”
SIAM J. Appl. Math.
69
,
1065
1083
(
2009
).
24.
K.
Sølna
, “
Acoustic pulse spreading in a random fractal
,”
SIAM J. Appl. Math.
63
,
1764
1788
(
2003
).
25.
R.
Burridge
and
H. W.
Chang
, “
Multimode one-dimensional wave propagation in a highly discontinuous medium
,”
Wave Motion
11
,
231
249
(
1989
).
26.
R.
Burridge
,
G.
Papanicolaou
, and
B.
White
, “
One-dimensional wave propagation in a highly discontinuous medium
,”
Wave Motion
10
,
19
44
(
1988
).
27.
J. -F.
Clouet
and
J. -P.
Fouque
, “
Spreading of a pulse traveling in random media
,”
Ann. Appl. Probab.
4
,
1083
1097
(
1994
).
28.
A.
Nachbin
and
K.
Sølna
, “
Apparent diffusion due to topographic microstructure in shallow waters
,”
Phys. Fluids
15
,
66
77
(
2003
).
29.
K.
Sølna
and
G.
Papanicolaou
, “
Ray theory for a locally layered medium
,”
Waves Random Media
10
,
151
198
(
2000
).
30.
A.
Fannjiang
and
K.
Sølna
, “
Scaling limits for wave beams in atmospheric turbulence
,”
Stochastics Dyn.
4
,
135
151
(
2004
).
31.
A. E.
Gargett
, “
The scaling of turbulence in the presence of stable stratification
,”
J. Geophys. Res.
93
,
5021
5036
(
1988
).
32.
C.
Sidi
and
F.
Dalaudier
, “
Turbulence in the stratified atmosphere: Recent theoretical developments and experimental results
,”
Adv. Space Res.
10
,
25
36
(
1990
).
33.
J. -M.
Bardet
,
G.
Lang
,
G.
Oppenheim
,
A.
Philippe
, and
M. S.
Taqqu
, in
Theory and Applications of Long-Range Dependence
, edited by
P.
Doukhan
,
G.
Oppenheim
, and
M. S.
Taqqu
(
Birkhauser
,
Boston
,
2003
), pp.
579
624
.
34.
W.
Feller
,
An Introduction to Probability Theory and Its Applications
(
Wiley
,
New York
,
1971
), Vol.
2
, Chap. 11.
35.
J.
Garnier
and
K.
Sølna
, “
Pulse propagation in random media with long-range correlation
,”
Multiscale Model. Simul.
7
,
1302
1324
(
2009
).
36.
R. F.
O’Doherty
and
N. A.
Anstey
, “
Reflections on amplitudes
,”
Geophys. Prospect.
19
,
430
458
(
1971
).
37.
H. A.
Kramers
, “
La diffusion de la lumière par les atomes (Diffusion of the light by the atoms)
,”
Atti. Congr. Intern. Fisica Como
2
,
545
557
(
1927
).
38.
R. de L.
Kronig
, “
On the theory of the dispersion of x-rays
,”
J. Opt. Soc. Am.
12
,
547
557
(
1926
).
39.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Table of Integrals, Series, and Products
(
Academic
,
San Diego, CA
,
1980
).
40.
S. G.
Samko
,
A. A.
Kilbas
, and
O. I.
Marichev
,
Fractional Integrals and Derivatives: Theory and Applications
(
Gordon and Breach Science
,
New York
,
1987
).
41.
M.
Seredynska
and
A.
Hanyga
, “
Nonlinear Hamiltonian equations with fractional damping
,”
J. Math. Phys.
41
,
2135
2156
(
2000
).
You do not currently have access to this content.