The effect of non-uniform tension on the normal modes of musical drumheads is examined. Using the standard (m,n) designation for the number of nodal diameters and circles, ideal circular membrane modes with m>0 are doubly degenerate. These degeneracies can be lifted by perturbations to the circular symmetry. Of practical interest to drummers are perturbations caused by non-uniform tension applied at the rim of the drum, leading in some cases to audible frequency splitting. The role of the (1,1) mode in practical drum tuning is analyzed using data obtained using time-averaged electronic speckle-pattern interferometry along with finite element analysis. The resulting model is then generalized to include all modes, using symmetry arguments along with a selection rule taken from group theory. The model compares favorably with both perturbation theory and finite element analysis, and is consistent with experimental observations.

1.
T. D.
Rossing
,
C. A.
Anderson
, and
R. I.
Mills
, “
Acoustics of timpani
,”
The Percussionist
19
,
18
31
(
1982
).
2.
R. S.
Christian
,
R. E.
Davis
,
A.
Tubis
,
C. A.
Anderson
,
R. I.
Mills
, and
T. D.
Rossing
, “
Effects of air loading on timpani membrane vibrations
,”
J. Acoust. Soc. Am.
76
,
1336
1345
(
1984
).
3.
T. D.
Rossing
,
I.
Bork
,
H.
Zhao
, and
D. O.
Fystrom
, “
Acoustics of snare drums
,”
J. Acoust. Soc. Am.
92
,
84
94
(
1992
).
4.
I. G.
Bassett
, “
Vibration and sound of the bass drum
,”
The Percussionist
19
,
50
58
(
1982
).
5.
C.
Mei
, “
Free vibrations of circular membranes under arbitrary tension by the finite-element method
,”
J. Acoust. Soc. Am.
46
,
693
700
(
1969
).
6.
L.
Rhaouti
,
A.
Chaigne
, and
P.
Joly
, “
Time-domain modeling and numerical simulation of a kettle drum
,”
J. Acoust. Soc. Am.
105
,
3545
3562
(
1999
).
7.
P. M.
Morse
and
K. U.
Ingard
,
Theoretical Acoustics
(
Princeton University Press
,
Princeton, NJ
,
1968
), pp.
209
213
.
8.
T. D.
Rossing
and
N. H.
Fletcher
,
Principles of Vibration and Sound
, 2nd ed. (
Springer
,
New York
,
2004
), p.
70
.
9.
Lord
Rayleigh
,
The Theory of Sound
(
Dover
,
New York
,
1945
), Vol.
1
, Chap. 9, pp.
334
339
.
10.
T. R.
Moore
, “
A simple design for an electronic speckle pattern interferometer
,”
Am. J. Phys.
72
,
1380
1384
(
2004
).
11.
T. R.
Moore
, “
Interferometric studies of a piano soundboard
,”
Am. J. Phys.
119
,
1783
1793
(
2006
).
12.
DrumDial, Inc.
, www.drumdial.com/ (Last viewed 7/24/
2009
).
13.
Noran Engineering
, NEI FUSION, www.NEiNastran.com (Last viewed 7/24/
2009
).
14.
R.
Perrin
, “
Selection rules for the splitting of the degenerate pairs of natural frequencies of thin circular rings
,”
Acustica
25
,
69
72
(
1971
).
15.
R.
Perrin
and
T.
Charnley
, “
Group theory and the bell
,”
J. Sound Vib.
31
,
411
418
(
1973
).
16.
R.
Perrin
, “
A group theoretical approach to warble in ornamented bells
,”
J. Sound Vib.
52
,
307
313
(
1977
).
17.
J. P.
Murphy
,
R.
Perrin
, and
T.
Charnley
, “
Doublet splitting in the circular plate
,”
J. Sound Vib.
95
,
389
395
(
1984
).
18.
B. F.
Chao
, “
Symmetry and terrestrial spectroscopy
,”
Geophys. J. R. Astron. Soc.
66
,
285
312
(
1981
).
19.
J.
Mathews
and
R. L.
Walker
,
Mathematical Methods of Physics
(
Benjamin/Cummings
,
Menlo Park, CA
,
1970
), pp.
443
445
.
20.
See, e.g.,
J.
Mathews
and
R. L.
Walker
,
Mathematical Methods of Physics
(Ref. 19), Chap. 10.
You do not currently have access to this content.