The intra-glottal vortical structures developed in a static divergent glottis with continuous flow entering the glottis are characterized. Laryngeal airflow calculations are performed using the Large Eddy Simulation approach. It has been shown that intra-glottal vortices are formed on the divergent wall of the glottis, immediately downstream of the separation point. Even with non-pulsatile flow entering the glottis, the vortices are intermittently shed, producing unsteady flow at the glottal exit. The vortical structures are characterized by significant negative static pressure relative to the ambient pressure. These vortices increase in size and strength as they are convected downstream by the flow due to the entrained air from the supra-glottal region. The negative static pressures associated with the intra-glottal vortical structures suggest that the closing phase during phonation may be accelerated by such vortices. The intra-glottal negative pressures can affect both vocal fold vibration and voice production.

1.
Alipour
,
F.
, and
Scherer
,
R. C.
(
2000
). “
Dynamic glottal pressures in an excised hemilarynx model
,”
J. Voice
14
,
443
454
.
2.
Alipour
,
F.
, and
Scherer
,
R. C.
(
2004
). “
Flow separation in a computational oscillating vocal fold model
,”
J. Acoust. Soc. Am.
116
,
1710
1719
.
3.
Barney
,
A.
,
Shadle
,
C. H.
, and
Davies
,
P. O. A. L.
(
1999
). “
Fluid flow in a dynamic mechanical model of the vocal folds and tract. I. Measurements and theory
,”
J. Acoust. Soc. Am.
105
,
444
455
.
4.
Decker
,
G. Z.
, and
Thomson
,
S. L.
(
2007
). “
Computational simulations of vocal fold vibration: Bernoulli versus Navier-Stokes
,”
J. Voice
21
,
273
284
.
5.
Degani
,
D.
,
Seginer
,
A.
, and
Levy
,
Y.
(
1990
). “
Graphical visualization of vortical flows by means of helicity
,”
AIAA J.
28
,
1347
1352
.
6.
Fant
,
G.
(
1982
). “
Preliminaries to analysis of the human voice source
,” Department of Speech, Music, and Hearing, Quarterly Progress and Status Report (KTH), STL-QPSR Report No. 23(4)/1982, http://www.speech.kth.se/prod/publications/files/qpsr/1982/1982_23_4_001-027.pdf (Last viewed 11/2/2009).
7.
Gauffin
,
J.
, and
Liljencrants
,
J.
(
1988
). “
Modeling the air flow in the glottis
,”
Ann. Bull. RILP
22
,
41
52
.
8.
Gauffin
,
J.
, and
Sundberg
,
J.
(
1989
). “
Spectral correlates of glottal voice source waveform characteristics
,”
J. Speech Hear. Res.
32
,
556
565
.
9.
Gobl
,
C.
(
1989
). “
A preliminary study of acoustic voice quality correlates
,” Department of Speech, Music, and Hearing—Quarterly Progress and Status Report (KTH), STL-QPSR Report No. 30(4)/1989, http://www.speech.kth.se/prod/publications/files/qpsr/1989/1989_30_4_009-022.pdf (Last viewed 11/2/2009).
10.
Gorham-Rowan
,
M.
, and
Morris
,
R.
(
2006
). “
Aerodynamic analysis of male-to-female transgender voice
,”
J. Voice
20
,
251
262
.
11.
Hanson
,
H. M.
(
1997
). “
Glottal characteristics of female speakers: Acoustic correlates
,”
J. Acoust. Soc. Am.
101
,
466
481
.
12.
Hofmans
,
G. C. J.
,
Groot
,
G.
,
Ranucci
,
M.
,
Graziani
,
G.
, and
Hirschberg
,
A.
(
2003
). “
Unsteady flow through in-vitro models of the glottis
,”
J. Acoust. Soc. Am.
113
,
1658
1675
.
13.
Holmberg
,
E.
,
Hillman
,
R. E.
, and
Perkell
,
J. S.
(
1988
). “
Glottal air flow and transglottal pressure measurements for male and female speakers in soft, normal and loud voice
,”
J. Acoust. Soc. Am.
84
,
511
529
.
14.
Khosla
,
S. M.
,
Murugappan
,
S.
, and
Gutmark
,
E. J.
(
2008b
). “
What can vortices tell us about vocal fold vibration and voice production
,”
Curr. Opin. Otolaryngol. Head Neck Surg.
16
,
183
187
.
15.
Khosla
,
S. M.
,
Murugappan
,
S.
,
Gutmark
,
E. J.
, and
Scherer
,
R. C.
(
2007
). “
Vortical flow field during phonation in an excised canine larynx model
,”
Ann. Otol. Rhinol. Laryngol.
116
,
217
228
.
16.
Khosla
,
S. M.
,
Murugappan
,
S.
,
Lakhamraju
,
R.
, and
Gutmark
,
E. J.
(
2008a
). “
Using particle image velocimetry to measure anterior-posterior velocity gradients in the excised canine larynx model
,”
Ann. Otol. Rhinol. Laryngol.
117
,
134
144
.
17.
Khosla
,
S. M.
,
Murugappan
,
S.
,
Paniello
,
R.
,
Ying
,
J.
, and
Gutmark
,
E. J.
(
2009
). “
Role of vortices in voice production: Normal versus asymmetric tension
,”
Laryngoscope
119
,
216
221
.
18.
Klatt
,
D. H.
, and
Klatt
,
L. C.
(
1990
). “
Analysis, synthesis, and perception of voice quality variations among female and male talkers
,”
J. Acoust. Soc. Am.
87
,
820
857
.
19.
Krane
,
M. H.
, and
Wei
,
T.
(
2006
). “
Theoretical assessment of unsteady aerodynamic effects in phonation
,”
J. Acoust. Soc. Am.
120
,
1578
1588
.
20.
Kucinschi
,
B. R.
,
Scherer
,
R. C.
,
DeWitt
,
K. J.
, and
Ng
,
T. T. M.
(
2006
). “
Flow visualization and acoustic consequences of the air moving through a static model of the human larynx
,”
J. Biomech. Eng.
128
,
380
390
.
21.
Lilly
,
D. K.
(
1966
). “
On the application of the eddy viscosity concept in the inertial subrange of turbulence
,” NCAR Manuscript No. 123.
22.
Lous
,
N. J. C.
,
Hofmans
,
G. C. J.
,
Veldhuis
,
R. N. J.
, and
Hirschberg
,
A.
(
1998
). “
A symmetrical two-mass vocal-fold model coupled to vocal tract and trachea, with application to prosthesis design
,”
Acta. Acust. Acust.
84
,
1135
1150
.
23.
McGowan
,
R.
(
1988
). “
An aeroacoustic approach to phonation
,”
J. Acoust. Soc. Am.
83
,
696
704
.
24.
Mihaescu
,
M.
,
Gutmark
,
E. J.
,
Khosla
S. M.
,
Scherer
,
R. C.
, and
Fuchs
,
L.
(
2007
). “
Flow and acoustics simulations based on LES and an acoustic analogy; an application to laryngeal airflow
,” AIAA Paper No. AIAA 2007-919.
25.
Murugappan
,
S.
,
Khosla
,
S. M.
,
Casper
,
K.
,
Oren
,
L.
, and
Gutmark
,
E. J.
(
2009
). “
Flow fields and acoustics in a unilateral scarred vocal fold model
,”
Ann. Otol. Rhinol. Laryngol.
118
,
44
50
.
26.
Neubauer
,
J.
,
Zhang
,
Z.
,
Miraghaie
,
R.
, and
Berry
,
D. A.
(
2007
). “
Coherent structures of the near field flow in a self-oscillating physical model of the vocal folds
,”
J. Acoust. Soc. Am.
121
,
1102
1118
.
27.
Nomura
,
H.
, and
Funada
,
T.
(
2007
). “
Effects of the false vocal folds on sound generation by an unsteady glottal jet through rigid wall model of the larynx
,”
Acoust. Sci. Technol.
28
,
403
412
.
28.
Pelorson
,
X.
,
Hirschberg
,
A.
,
van Hassel
,
R. R.
,
Wijnands
,
A. P. J.
, and
Auregan
,
Y.
(
1994
). “
Theoretical and experimental study of quasisteady—Flow separation within the glottis during phonation. Application to a modified two-mass model
,”
J. Acoust. Soc. Am.
96
,
3416
3431
.
29.
Pope
,
S. B.
(
2000
).
Turbulent Flows
(
Cambridge University Press
,
Cambridge, England
).
30.
Sapienza
,
C. M.
, and
Stathopoulos
,
E. T.
(
1994
). “
Comparison of maximum flow declination rate: Children versus adults
,”
J. Voice
8
,
240
247
.
31.
Shinwari
,
D.
,
Scherer
,
R. C.
,
DeWitt
,
K. J.
, and
Afjeh
,
A. A.
(
2003
). “
Flow visualization and pressure distributions in a model of the glottis with a symmetric and oblique divergent angle of 10 degrees
,”
J. Acoust. Soc. Am.
113
,
487
497
.
32.
Stevens
,
K. N.
(
1998
).
Acoustic Phonetics
(
MIT
,
Cambridge, MA
).
33.
Story
,
B. H.
, and
Titze
,
I. R.
(
1995
). “
Voice simulation with a body-cover model of the vocal folds
,”
J. Acoust. Soc. Am.
97
,
1249
1260
.
34.
Suh
,
J.
, and
Frankel
,
S. H.
(
2007
). “
Numerical simulation of turbulence transition and sound radiation for flow through a rigid glottal model
,”
J. Acoust. Soc. Am.
121
,
3728
3739
.
35.
Suh
,
J.
, and
Frankel
,
S. H.
(
2008
). “
Comparing turbulence models for flow through a rigid glottal model (L)
,”
J. Acoust. Soc. Am.
123
,
1237
1240
.
36.
Sundberg
,
J.
, and
Gauffin
,
J.
(
1979
). in “
Waveform and spectrum of the glottal voice source
,”
Frontiers of Speech Communication Research
, edited by
B.
Lindholm
and
S.
Ohman
(
Academic
,
New York
), pp.
301
320
.
37.
Titze
,
I. R.
(
2000
).
Principles of Voice Production
(
National Center for Voice and Speech
,
Iowa City, IA
).
38.
Triep
,
M.
,
Brucker
,
C.
, and
Schroder
,
W.
(
2005
). “
High-speed PIV measurements of the flow downstream of a dynamic mechanical model of the human vocal folds
,”
Exp. Fluids
39
,
232
245
.
39.
Van Doormaal
,
J. P.
, and
Raithby
,
G. D.
(
1984
). “
Enhancements of the SIMPLE method for predicting incompressible fluid flows
,”
Numer. Heat Transfer
7
,
147
163
.
40.
Wilcox
,
D. C.
(
1993
).
Turbulence modeling for CFD
(
DCW Industries
,
La Canada, CA
).
41.
Woo
,
P.
(
1996
). “
Quantification of videostrobolaryngoscopic findings-measurements of the normal glottal cycle
,”
Laryngoscope
106
,
1
27
.
42.
Zhang
,
C.
,
Zhao
,
W.
,
Frankel
,
S. H.
, and
Mongeau
,
L.
(
2002a
). “
Computational aeroacoustics of phonation, Part II: Effects of flow parameters and ventricular folds
,”
J. Acoust. Soc. Am.
112
,
2147
2154
.
43.
Zhang
,
Z.
,
Mongeau
,
L.
,
Frankel
,
S. H.
,
Thomson
,
S.
, and
Park
,
J. B.
(
2004
). “
Sound generation by steady flow through glottis-shaped orifices
,”
J. Acoust. Soc. Am.
116
,
1720
1728
.
44.
Zhao
,
W.
,
Frankel
,
S. H.
, and
Mongeau
,
L.
(
2001
). “
Numerical simulations of sound from confined pulsating axisymmetric jets
,”
AIAA J.
39
,
1868
1874
.
45.
Zhao
,
W.
,
Zhang
,
C.
,
Frankel
,
S. H.
, and
Mongeau
,
L.
(
2002b
). “
Computational aeroacoustics of phonation, Part I: Computational methods and sound generation mechanisms
,”
J. Acoust. Soc. Am.
112
,
2134
2146
.
You do not currently have access to this content.