The low-frequency target strength of shoaling Atlantic herring (Clupea harengus) in the Gulf of Maine during Autumn 2006 spawning season is estimated from experimental data acquired simultaneously at multiple frequencies in the 3001200Hz range using (1) a low-frequency ocean acoustic waveguide remote sensing (OAWRS) system, (2) areal population density calibration with several conventional fish finding sonar (CFFS) systems, and (3) low-frequency transmission loss measurements. The OAWRS system’s instantaneous imaging diameter of 100km and regular updating enabled unaliased monitoring of fish populations over ecosystem scales including shoals of Atlantic herring containing hundreds of millions of individuals, as confirmed by concurrent trawl and CFFS sampling. High spatial-temporal coregistration was found between herring shoals imaged by OAWRS and concurrent CFFS line-transects, which also provided fish depth distributions. The mean scattering cross-section of an individual shoaling herring is found to consistently exhibit a strong, roughly 20dB/octave roll-off with decreasing frequency in the range of the OAWRS survey over all days of the roughly 2-week experiment, consistent with the steep roll-offs expected for sub-resonance scattering from fish with air-filled swimbladders.

1.
http://www.gma.org/herring/ (Last viewed January 29,
2009
).
2.
N. C.
Makris
,
P.
Ratilal
,
D. T.
Symonds
,
S.
Jagannathan
,
S.
Lee
, and
R. W.
Nero
, “
Fish population and behavior revealed by instantaneous continental shelf-scale imaging
,”
Science
311
,
660
663
(
2006
).
3.
N. C.
Makris
,
P.
Ratilal
,
S.
Jagannathan
,
Z.
Gong
,
M.
Andrews
,
I.
Bertsatos
,
O. R.
Gødo
,
R. W.
Nero
, and
J. M.
Jech
, “
Critical population density triggers rapid formation of vast oceanic fish shoals
,”
Science
323
,
1734
1737
(
2009
).
4.
N. C.
Makris
,
P.
Ratilal
,
S.
Jagannathan
,
Z.
Gong
,
M.
Andrews
,
I.
Bertsatos
,
O. R.
Godø
,
R. W.
Nero
, and
J. M.
Jech
, “
Critical population density triggers rapid formation of vast oceanic fish shoals
,” materials and methods are available as supporting material on Science online (
2009
).
5.
B. S.
McCartney
and
A. R.
Stubbs
, “
Measurement of the acoustic target strength of fish in dorsal aspect, including swimbladder resonance
,”
J. Sound Vib.
15
,
397
420
(
1971
).
6.
R. H.
Love
, “
A comparison of volume scattering strength data with model calculations based on quasisynoptically collected fishery data
,”
J. Acoust. Soc. Am.
94
,
2255
2268
(
1993
).
7.
R. W.
Nero
,
C. H.
Thompson
, and
J. M.
Jech
, “
In situ acoustic estimates of the swimbladder volume of Atlantic herring (Clupea harengus)
,”
ICES J. Mar. Sci.
61
,
323
337
(
2004
).
8.
K. G.
Foote
, “
Importance of the swimbladder in acoustic scattering by fish: A comparison of gadoid and mackerel target strengths
,”
J. Acoust. Soc. Am.
67
,
2084
2089
(
1980
).
9.
D. V.
Holliday
, “
Resonance structure in echoes from schooled pelagic fish
,”
J. Acoust. Soc. Am.
51
,
1322
1332
(
1972
).
10.
R. W.
Nero
,
C. H.
Thompson
,
C.
Feuillade
, and
R. H.
Love
, “
A highly reflective low cost backscattering target
,”
IEEE J. Ocean. Eng.
26
,
259
265
(
2001
).
11.
T. K.
Stanton
,
D.
Chu
,
J. M.
Jech
, and
J. D.
Irish
, “
A broadband echosounder for resonance classification of swimbladder-bearing fish
,” in
Proceedings of the 2007 IEEE Oceans Conference
,
Aberdeen, Scotland
, (
2007
).
12.
W. J.
Overholtz
, “
The Gulf of Maine-Georges Bank Atlantic herring (Clupea harengus): Spatial pattern analysis of the collapse and recovery of a large marine fish complex
,”
Fish. Res.
57
,
237
254
(
2002
).
13.
W. J.
Overholtz
and
K. D.
Friedland
, “
Recovery of the Gulf of Maine herring (Clupea harengus) complex: perspectives based on bottom trawl survey data
,”
Fish. Bull.
100
,
593
608
(
2002
).
14.
W. J.
Overholtz
,
J. M.
Jech
,
W. L.
Michaels
,
L. D.
Jacobson
, and
P. J.
Sullivan
, “
Empirical comparisons of survey design in acoustic surveys of Gulf of Maine-Georges Bank Atlantic herring
,”
J. Northw. Atl. Fish. Sci.
36
,
127
144
(
2006
).
15.
N. C.
Makris
and
P.
Ratilal
, “
OAWRS Gulf of Maine 2006 Experiment Cruise Report
,” sponsored by the Office of Naval Research and Alfred P. Sloan Foundation, 19 September–6 October,
2006
.
16.
M.
Andrews
,
T.
Chen
, and
P.
Ratilal
, “
Empirical dependence of acoustic transmission scintillation statistics on bandwidth, frequency, and range on New Jersey continental shelf
,”
J. Acoust. Soc. Am.
125
,
111
124
(
2009
).
17.
C. I.
Malme
, “
Development of a high target strength passive acoustic reflector low-frequency sonar applications
,”
IEEE J. Ocean. Eng.
19
,
438
448
(
1994
).
18.
E. T.
Küsel
and
P.
Ratilal
, “
Effects of incident field refraction on scattered field from vertically extended cylindrical targets in range-dependent ocean waveguides
,”
J. Acoust. Soc. Am.
125
,
1930
1936
(
2009
).
19.
N. C.
Makris
and
J. M.
Berkson
, “
Long-range backscatter from the Mid-Atlantic Ridge
,”
J. Acoust. Soc. Am.
95
,
1865
1881
(
1994
).
20.
N. C.
Makris
,
L. Z.
Avelino
, and
R.
Menis
, “
Deterministic reverberation from ocean ridges
,”
J. Acoust. Soc. Am.
97
,
3547
3574
(
1995
).
21.
P.
Ratilal
,
Y.
Lai
,
D.
Symonds
,
L. A.
Ruhlmann
,
J. R.
Preston
,
E. K.
Scheer
,
M. T.
Garr
,
C. W.
Holland
,
J. A.
Goff
, and
N. C.
Makris
, “
Long range acoustic imaging of the continental shelf environment: The Acoustic Clutter Reconnaissance Experiment 2001
,”
J. Acoust. Soc. Am.
117
,
1977
1998
(
2005
).
22.
T. C.
Weber
,
H.
Pena
, and
J. M.
Jech
, “
Multibeam and single-beam sonar observations of Atlantic herring in the Gulf of Maine
,”
J. Acoust. Soc. Am.
122
,
3003
3004
(
2007
).
23.
R. C.
Dotson
and
D. A.
Griffith
, “
A high-speed rope trawl for collecting coastal pelagic fishes
,”
California Cooperative Oceanic Fisheries Investigation, Progress Reports
37
,
134
139
(
1996
).
24.
P. G.
Bergmann
, “
Intensity fluctuations
,” in
The Physics of Sound in the Sea, Part I: Transmission
(
National Defense Research Committee
,
Washington, DC
,
1946
).
25.
I.
Dyer
, “
Statistics of sound propagation in the ocean
,”
J. Acoust. Soc. Am.
48
,
337
345
(
1970
).
26.
N. C.
Makris
, “
The effect of saturated transmission scintillation on ocean acoustic intensity measurements
,”
J. Acoust. Soc. Am.
100
,
769
783
(
1996
).
27.
M. D.
Collins
, “
A split-step Pade solution for the parabolic equation method
,”
J. Acoust. Soc. Am.
93
,
1736
1742
(
1993
).
28.
G.
Bar-Yehoshua
, “
Quantifying the effect of dispersion in continental shelf sound propagation
,” MS thesis,
Massachusetts Institute of Technology
, Cambridge, MA (
2002
).
29.
P.
Ratilal
,
Y.
Lai
, and
N.
Makris
, “
Validity of the sonar equation and Babinet’s principle for scattering in a stratified medium
,”
J. Acoust. Soc. Am.
112
,
1797
1816
(
2002
).
30.
M.
Andrews
,
Z.
Gong
, and
P.
Ratilal
, “
High resolution population density imaging of random scatterers with the matched filtered scattered field variance
,”
J. Acoust. Soc. Am.
126
,
1057
1068
(
2009
).
31.
T. R.
Hahn
, “
Low frequency sound scattering from spherical assemblages of bubbles using effective medium theory
,”
J. Acoust. Soc. Am.
122
,
3252
3267
(
2007
).
32.
A.
Galinde
,
N.
Donabed
,
M.
Andrews
,
S.
Lee
,
N. C.
Makris
, and
P.
Ratilal
, “
Range-dependent waveguide scattering model calibrated for bottom reverberation in a continental shelf environment
,”
J. Acoust. Soc. Am.
123
,
1270
1281
(
2008
).
33.
D.
Symonds
, “
Instantaneously imaging and continuously monitoring fish populations over continental-shelf scales using ocean acoustic waveguide remote sensing
,” Ph.D. thesis,
Massachusetts Institute of Technology
, Cambridge, MA (
2008
).
34.
K. G.
Foote
, “
Fish target strengths for use in echo integrator survey
,”
J. Acoust. Soc. Am.
82
,
981
987
(
1987
).
35.
K. G.
Foote
,
A.
Aglen
, and
O.
Nakken
, “
Measurement of fish target strength with a split-beam echo sounder
,”
J. Acoust. Soc. Am.
80
,
612
621
(
1986
).
36.
D. N.
MacLennan
,
P. G.
Fernandes
, and
J.
Dalen
, “
A consistent approach to definitions and symbols in fisheries acoustics
,”
ICES J. Mar. Sci.
59
,
365
369
(
2002
).
37.
E.
Ona
, “
An expanded target-strength relationship for herring
,”
ICES J. Mar. Sci.
60
,
493
499
(
2003
).
38.
A. P.
French
,
Vibrations and Waves
,
MIT Introductory Physics Series
(
CRC
,
Boca Raton, FL
,
1971
).
39.
F. R.
Harden Jones
and
N. B.
Marshall
, “
The structure and functions of the teleostean swimbladder
,”
Biol. Rev.
28
,
16
83
(
1953
).
40.
D. N.
MacLennan
and
E. J.
Simmonds
,
Fisheries Acoustics
, 2nd ed. (
Chapman and Hall
,
London
,
1992
), pp.
177
182
.
41.
F. R.
Harden Jones
and
P.
Scholes
, “
Gas secretion and resorption in the swimbladder of the cod Gadus morhua
,”
J. Comp. Physiol.
155
,
319
331
(
1985
).
42.
O. R.
Godø
and
K.
Michalsen
, “
The use of data storage tags to study cod natural behaviour and availability to abundance surveys in the Barents Sea
,”
International Council for the Exploration of the Sea
(
1997
).
43.
S. M. M.
Fässler
,
P. G.
Fernandes
,
S. I. K.
Semple
, and
A. S.
Brierley
, “
Depth-dependent swimbladder compression in herring Clupea harengus observed using magnetic resonance imaging
,”
J. Fish Biol.
74
,
296
303
(
2009
).
44.
V. M.
Brawn
, “
Physical properties and hydrostatic function of the swimbladder of herring (Clupea harengus L)
,”
J. Fish. Res. Board Can.
19
,
635
656
(
1962
).
45.
J. H. S.
Blaxter
and
R. S.
Batty
, “
The herring swimbladder as a gas reservoir for the acousticolateralis system
,”
J. Mar. Biol. Assoc. U.K.
59
,
1
10
(
1979
).
46.
J. H. S.
Blaxter
and
J. R.
Hunter
, “
The biology of the Clupeoid fishes
,”
Adv. Mar. Biol.
20
,
1
223
(
1982
).
47.
J. H. S.
Blaxter
and
R. S.
Batty
, “
The herring swimbladder: Loss and gain of gas
,”
J. Mar. Biol. Assoc. U.K.
64
,
441
459
(
1984
).
48.
R. E.
Thorne
and
G. L.
Thomas
, “
Acoustic observations of gas-bubble release by Pacific herring Clupea harengus pallasi
,”
Can. J. Fish. Aquat. Sci.
47
,
1920
1928
(
1990
).
49.
G.
Sundnes
,
T.
Enns
, and
P. F.
Scholander
, “
Gas secretion in fishes lacking rete mirabile
,”
J. Exp. Biol.
35
,
671
676
(
1958
).
50.
G.
Fahlén
, “
Morphological aspects on the hydrostatic function of the gas bladder of Clupea harengus L.
,”
Acta. Univ. Lund. Sect. II
1
,
1
49
(
1967
).
51.
R.
Fänge
, “
Gas exchange in fish swim bladder
,”
Reviews of Physiology Biochemistry and Pharmacology
(
Springer-Verlag
,
Berlin
,
1983
), Vol.
97
, pp.
111
158
.
52.
L.
Nøttestad
, “
Extensive gas bubble release in Norwegian spring-spawning herring (Clupea harengus) during predator avoidance
,”
ICES J. Mar. Sci.
55
,
1133
1140
(
1998
).
53.
G.
Fahlén
, “
Morphology of the gas bladder of Coregonus laveratus L.
,”
Acta. Univ. Lund. Sect. II
28
,
1
37
(
1967
).
54.
G.
Sundnes
and
P.
Bratland
, “
Notes on the gas content and neutral buoyancy in physostome fish
,”
Report on Norwegian Fishery and Marine Investigations
16
,
89
97
(
1972
).
55.
J. A.
Cranston
, “
Lxi. studies in gas production by bacteria, II. Denitrification and bacterial growth phases
,”
Biochem. J.
24
,
529
548
(
1930
).
56.
J. S.
Link
and
J.
Burnett
, “
The relationship between stomach contents and maturity state for northwest Atlantic fishes: New paradigms?
,”
J. Fish Biol.
59
,
783
794
(
2001
).
57.
R. H.
Love
, “
Resonant acoustic scattering by swimbladder-bearing fish
,”
J. Acoust. Soc. Am.
64
,
571
580
(
1978
).
58.
C. H.
Thompson
and
R. H.
Love
, “
Determination of fish size distributions and aerial densities using broadband, low-frequency measurements
,”
ICES J. Mar. Sci.
53
,
197
201
(
1996
).
59.
R. W.
Nero
and
M. E.
Huster
, “
Low-frequency acoustic imaging of Pacific salmon on the high seas
,”
Can. J. Fish. Aquat. Sci.
53
,
2513
2523
(
1996
).
60.
R. W.
Nero
,
C. H.
Thompson
, and
R. H.
Love
, “
Abyssopelagic grenadiers: the probable cause of low-frequency sound scattering at great depths off the Oregon and California coasts
,”
Deep-Sea Res., Part I
44
,
627
645
(
1997
).
61.
R. W.
Nero
,
C. H.
Thompson
, and
R. H.
Love
, “
Low-frequency acoustic measurements of Pacific hake, merluccicus productus, off the west coast of the United States
,”
Fish. Bull.
96
,
329
343
(
1998
).
62.
D.
Weston
, “
Sound propagation in the presence of bladder fish
,” in
Underwater Acoustics
, edited by
V. M.
Albers
(
Plenum
,
New York
,
1967
), Vol.
2
, pp.
55
88
.
63.
Z.
Ye
, “
Low-frequency acoustic scattering by gas-filled prolate spheroids in liquids
,”
J. Acoust. Soc. Am.
101
,
1945
1952
(
1997
).
64.
C.
Feuillade
and
M. F.
Werby
, “
Resonances of deformed gas bubbles in liquids
,”
J. Acoust. Soc. Am.
96
,
3684
3692
(
1994
).
65.
E.
Ona
, “
Physiological factors causing natural variations in acoustic target strength of fish
,”
J. Mar. Biol. Assoc. U.K.
70
,
107
127
(
1990
).
66.
N.
Gorska
and
E.
Ona
, “
Modelling the effect of swimbladder compression on the acoustic backscattering from herring at normal or near-normal dorsal incidences
,”
ICES J. Mar. Sci.
60
,
1381
1391
(
2003
).
67.
N. C.
Makris
,
P.
Ratilal
,
D. T.
Symonds
,
S.
Jagannathan
,
S.
Lee
, and
R. W.
Nero
, “
Fish population and behavior revealed by instantaneous continental shelf-scale imaging
,” Materials and methods are available as supporting material on Science online (
2006
).
68.
P. H.
Dahl
and
O. A.
Mathisen
, “
Measurement of fish target strength and associated directivity at high frequencies
,”
J. Acoust. Soc. Am.
73
,
1205
1211
(
1983
).
69.
A.
Leon-Garcia
,
Probability and Random Processes for Electrical Engineering
, 2nd ed. (
Addison-Wesley Longman
,
Reading, MA
,
1994
), p.
288
.
70.
H.
Bucker
, “
Sound propagation in a channel with lossy boundaries
,”
J. Acoust. Soc. Am.
48
,
1187
1194
(
1970
).
71.
S.
Gauthier
and
G. A.
Rose
, “
Target strength of encaged Atlantic redfish (Sebastes spp.)
,”
ICES J. Mar. Sci.
58
,
562
568
(
2001
).
72.
C.
Stransky
, “
Geographic variation of golden redfish (Sebastes marinus) and deep-sea redfish (S. mentella) in the North Atlantic based on otolith shape analysis
,”
ICES J. Mar. Sci.
62
,
1691
1698
(
2005
).
You do not currently have access to this content.