Transiently evoked otoacoustic emissions (TEOAEs) are normally modeled as the sum of asymmetric waveforms. However, some previous studies of TEOAEs used time-frequency (TF) methods to decompose the signals into symmetric waveforms. This approach was justified mainly as a means to reduce the complexity of the calculations. The present study extended the dictionary of numeric functions to incorporate asymmetric waveforms into the analysis. The necessary calculations were carried out using an adaptive approximation algorithm based on the matching pursuit (MP) numerical technique. The classic MP dictionary uses Gabor functions and consists of waveforms described by five parameters, namely, frequency, latency, time span, amplitude, and phase. In the present investigation, a sixth parameter, the degree of asymmetry, was added in order to enhance the flexibility of this approach. The effects of expanding the available functions were evaluated by means of both simulations using synthetic signals and authentic TEOAEs. The resulting analyses showed that the contributions of asymmetric components in the OAE signal are appreciable. In short, the expanded analysis method brought about important improvements in identifying TEOAE components including the correct detection of components with long decays, which are often related to spontaneous OAE activity, the elimination of a “dark energy” effect in TF distributions, and more reliable estimates of latency-frequency relationships. The latter feature is especially important for correct estimation of latency-frequency data, which is a crucial factor in investigations of OAE-generation mechanisms.

1.
Aertsen
,
A. M.
, and
Johannesma
,
P. I.
(
1980
). “
Spectro-temporal receptive fields of auditory neurons in the grassfrog. I. Characterisation of tonal and natural stimuli
,”
Biol. Cybern.
38
,
223
234
.
2.
Cheng
,
J.
(
1995
). “
Time-frequency analysis of transient evoked otoacoustic emissions via smoothed pseudo Wigner-Ville distribution
,”
Scand. Audiol.
24
,
91
96
.
3.
Delprat
,
N.
,
Escudié
,
B.
,
Guillemain
,
P.
,
Kronland-Martinet
,
R.
,
Tchamitchian
,
P.
, and
Torrésani
,
B.
(
1992
). “
Asymptotic wavelet and Gabor analysis: Extraction of instantaneous frequencies
,”
IEEE Trans. Inf. Theory
38
,
644
664
.
4.
Durka
,
P. J.
,
Ircha
,
D.
, and
Blinowska
,
K. J.
(
2001a
). “
Stochastic time-frequency dictionaries for matching pursuit
,”
IEEE Trans. Signal Process.
49
,
507
510
.
5.
Durka
,
P. J.
,
Ircha
,
D.
,
Neuper
,
C.
, and
Pfurtscheller
,
G.
(
2001b
). “
Time-frequency microstructure of event-related electro-encephalogram desynchronisation and synchronisation
,”
Med. Biol. Eng. Comput.
39
,
315
321
.
6.
Gabor
,
D.
(
1946
). “
Theory of communication
,”
J. Inst. Electr. Eng.
93
,
429
457
.
7.
Goodwin
,
M.
, and
Vetterli
,
M.
(
1999
). “
Matching pursuit and atomic signal models based on recursive filter banks
,”
IEEE Trans. Signal Process.
47
,
1890
1902
.
8.
Goupillaud
,
P.
,
Grossman
,
A.
, and
Morlet
,
J.
(
1984
). “
Cycle-octave and related transforms in seismic signal analysis
,”
Geoexploration
23
,
85
102
.
9.
Greenwood
,
D. D.
(
1990
). “
A cochlear frequency position function for several species—29 years later
,”
J. Acoust. Soc. Am.
87
,
2592
2605
.
10.
Gribonval
,
R.
, and
Bacry
,
E.
(
2003
). “
Harmonic decomposition of audio signals with matching pursuit
,”
IEEE Trans. Signal Process.
51
,
101
111
.
11.
Gribonval
,
R.
,
Depalle
,
P.
,
Rodet
,
X.
,
Bacry
,
E.
, and
Mallat
,
S.
(
1996
). “
Sound signals decomposition using a high resolution matching pursuit
,”
Proceedings of the International Computer Music Conference
, August, pp.
293
296
.
12.
Hatzopoulos
,
S.
,
Cheng
,
J.
,
Grzanka
,
A.
, and
Martini
,
A.
(
2000
). “
Time-frequency analyses of TEOAE recordings from normals and SNHL patients
,”
Audiology
39
,
1
12
.
13.
Jedrzejczak
,
W. W.
,
Blinowska
,
K. J.
,
Kochanek
,
K.
, and
Skarzynski
,
H.
(
2008a
). “
Synchronized spontaneous otoacoustic emissions analyzed in a time-frequency domain
,”
J. Acoust. Soc. Am.
124
,
3720
3729
.
14.
Jedrzejczak
,
W. W.
,
Blinowska
,
K. J.
, and
Konopka
,
W.
(
2005
). “
Time-frequency analysis of transiently evoked otoacoustic emissions of subjects exposed to noise
,”
Hear. Res.
205
,
249
255
.
15.
Jedrzejczak
,
W. W.
,
Blinowska
,
K. J.
, and
Konopka
,
W.
(
2006
). “
Resonant modes in transiently evoked otoacoustic emissions and asymmetries between left and right ear
,”
J. Acoust. Soc. Am.
119
,
2226
2231
.
16.
Jedrzejczak
,
W. W.
,
Blinowska
,
K. J.
,
Konopka
,
W.
,
Grzanka
,
A.
, and
Durka
,
P. J.
(
2004
). “
Identification of otoacoustic emission components by means of adaptive approximations
,”
J. Acoust. Soc. Am.
115
,
2148
2158
.
17.
Jedrzejczak
,
W. W.
,
Hatzopoulos
,
S.
,
Martini
,
A.
, and
Blinowska
,
K. J.
(
2007
). “
Otoacoustic emissions latency difference between full-term and preterm neonates
,”
Hear. Res.
231
,
54
62
.
18.
Jedrzejczak
,
W. W.
,
Lorens
,
A.
,
Piotrowska
,
A.
,
Kochanek
,
K.
, and
Skarzynski
,
H.
(
2009
). “
Otoacoustic emissions evoked by 0.5 kHz tone bursts
,”
J. Acoust. Soc. Am.
125
,
3158
3165
.
19.
Jedrzejczak
,
W. W.
,
Smurzynski
,
J.
, and
Blinowska
,
K. J.
(
2008b
). “
Origin of suppression of otoacoustic emissions evoked by two-tone bursts
,”
Hear. Res.
235
,
80
89
.
20.
Kemp
,
D. T.
,
Bray
,
P.
,
Alexander
,
L.
, and
Brown
,
A. M.
(
1986
). “
Acoustic emission cochleography-practical aspects
,”
Scand. Audiol. Suppl.
25
,
71
95
.
21.
Kulawiec
,
J. T.
, and
Orlando
,
M. S.
(
1995
). “
The contribution of spontaneous otoacoustic emissions to the click evoked otoacoustic emissions
,”
Ear Hear.
16
,
515
520
.
22.
Malinowska
,
U.
,
Durka
,
P. J.
,
Zygierewicz
,
J.
,
Szelenberger
,
W.
, and
Wakarow
,
A.
(
2007
). “
Explicit parameterization of sleep EEG transients
,”
Comput. Biol. Med.
37
,
534
541
.
23.
Mallat
,
S. G.
, and
Zhang
,
Z.
(
1993
). “
Matching pursuit with time-frequency dictionaries
,”
IEEE Trans. Signal Process.
41
,
3397
3415
.
24.
Marozas
,
V.
,
Janusauskas
,
A.
,
Lukosevicius
,
A.
, and
Sörnmo
,
L.
(
2006
). “
Multiscale detection of transient evoked otoacoustic emissions
,”
IEEE Trans. Biomed. Eng.
53
,
1586
1593
.
25.
Moleti
,
A.
, and
Sisto
,
R.
(
2003
). “
Objective estimates of cochlear tuning by otoacoustic emission analysis
,”
J. Acoust. Soc. Am.
113
,
423
429
.
26.
Moleti
,
A.
, and
Sisto
,
R.
(
2008
). “
Comparison between otoacoustic and auditory brainstem response latencies supports slow backward propagation of otoacoustic emissions
,”
J. Acoust. Soc. Am.
123
,
1495
1503
.
27.
Moleti
,
A.
,
Sisto
,
R.
,
Tognola
,
G.
,
Parazzini
,
M.
,
Ravazzani
,
P.
, and
Grandori
,
F.
(
2005
). “
Otoacoustic emission latency, cochlear tuning, and hearing functionality in neonates
,”
J. Acoust. Soc. Am.
118
,
1576
1584
.
28.
Notaro
,
G.
,
Al-Maamury
,
A. M.
,
Moleti
,
A.
, and
Sisto
,
R.
(
2007
). “
Wavelet and matching pursuit estimates of the transient-evoked otoacoustic emission latency
,”
J. Acoust. Soc. Am.
122
,
3576
3585
.
29.
Ozdamar
,
O.
,
Zhang
,
J.
,
Kalayci
,
T.
, and
Ulgen
,
Y.
(
1997
). “
Time-frequency distribution of evoked otoacoustic emissions
,”
Br. J. Audiol.
31
,
461
471
.
30.
Patterson
,
R. D.
,
Robinson
,
K.
,
Holdsworth
,
J.
,
McKeown
,
D.
,
Zhang
,
C.
, and
Allerhand
,
M.
(
1992
). “
Complex sounds and auditory images
,”
Auditory Physiology and Perception
,
Proceedings of the 9th International Symposium on Hearing
, edited by
Y.
Cazals
,
L.
Demany
, and
K.
Horner
(
Pergamon
,
Oxford
), pp.
429
446
.
31.
Probst
,
R.
,
Lonsbury-Martin
,
B. L.
, and
Martin
,
G. K.
(
1991
). “
A review of otoacoustic emissions
,”
J. Acoust. Soc. Am.
89
,
2027
2067
.
32.
Sisto
,
R.
, and
Moleti
,
A.
(
2002
). “
On the frequency dependence of the otoacoustic emission latency in hypoacoustic and normal ears
,”
J. Acoust. Soc. Am.
111
,
297
308
.
33.
Sisto
,
R.
,
Moleti
,
A.
, and
Lucertini
,
M.
(
2001
). “
Spontaneous otoacoustic emissions and relaxation dynamics of long decay time OAEs in audiometrically normal and impaired subjects
,”
J. Acoust. Soc. Am.
109
,
638
647
.
34.
Sturm
,
B. L.
,
Shynk
,
J. J.
, and
Daudet
,
L.
(
2008
). “
Dark energy in sparse atomic estimations
,”
IEEE Trans. Audio, Speech, Lang. Process.
16
,
671
676
.
35.
Tognola
,
G.
,
Grandori
,
F.
, and
Ravazzani
,
P.
(
1997
). “
Time-frequency distributions of click-evoked otoacoustic emissions
,”
Hear. Res.
106
,
112
122
.
36.
Tognola
,
G.
,
Grandori
,
F.
, and
Ravazzani
,
P.
(
2001
). “
Time-frequency analysis of neonatal click-evoked otoacoustic emissions
,”
Scand. Audiol. Suppl.
52
,
135
137
.
37.
Tognola
,
G.
,
Parazzini
,
M.
,
de Jager
,
P.
,
Brienesse
,
P.
,
Ravazzani
,
P.
, and
Grandori
,
F.
(
2005
). “
Cochlear maturation and otoacoustic emissions in preterm infants: A time-frequency approach
,”
Hear. Res.
199
,
71
80
.
38.
Wang
,
W.
,
Guo
,
Z.
,
Yang
,
J.
,
Zhang
,
Y.
,
Durand
,
L. G.
, and
Loew
,
M.
(
2001
). “
Analysis of the first heart sound using the matching pursuit method
,”
Med. Biol. Eng. Comput.
39
,
644
648
.
39.
Wit
,
H. P.
,
van Dijk
,
P.
, and
Avan
,
P.
(
1994
). “
Wavelet analysis of real ear and synthesized click evoked otoacoustic emissions
,”
Hear. Res.
73
,
141
147
.
40.
Zhang
,
T.
, and
Penner
,
M. J.
(
1998
). “
A new method for the automated detection of spontaneous otoacoustic emissions embedded in noisy data
,”
Hear. Res.
117
,
107
113
.
41.
Zhang
,
Z. G.
,
Zhang
,
V. W.
,
Chan
,
S. C.
,
McPherson
,
B.
, and
Hu
,
Y.
(
2008
). “
Time-frequency analysis of click-evoked otoacoustic emissions by means of a minimum variance spectral estimation-based method
,”
Hear. Res.
243
,
18
27
.
You do not currently have access to this content.