The problem of reconstructing an object’s weakly varying compressibility and density distributions in three-dimensional (3D) acoustic diffraction tomography is studied. Based on the Fourier diffraction projection theorem for acoustic media, it is demonstrated that the 3D Fourier components of an object’s compressibility and density distributions can be decoupled algebraically, thereby providing a method for separately reconstructing the distributions. This is facilitated by the identification and exploitation of tomographic symmetries and the rotational invariance of the imaging model. The developed reconstruction methods are investigated by use of computer- simulation studies. The application of the proposed image reconstruction strategy to other tomography problems is discussed.

1.
E.
Wolf
, “
Principles and development of diffraction tomography
,” in
Trends in Optics
, edited by
A.
Consortini
(
Academic
,
San Diego, CA
,
1996
), pp.
83
110
.
2.
A. J.
Devaney
, “
Reconstructive tomography with diffracting wavefields
,”
Inverse Probl.
2
,
161
183
(
1986
).
3.
A. J.
Devaney
, “
A filtered backpropagation algorithm for diffraction tomography
,”
Ultrason. Imaging
4
,
336
350
(
1982
).
4.
S.
Pan
and
A.
Kak
, “
A computational study of reconstruction algorithms for diffraction tomography: Interpolation versus filtered backpropagation
,”
IEEE Trans. Acoust., Speech, Signal Process.
31
,
1262
1275
(
1983
).
5.
X.
Pan
, “
Unified reconstruction theory for diffraction tomography, with consideration of noise control
,”
J. Opt. Soc. Am. A
15
,
2312
2326
(
1998
).
6.
M. A.
Anastasio
and
X.
Pan
, “
Computationally efficient and statistically robust image reconstruction in 3D diffraction tomography
,”
J. Opt. Soc. Am. A
17
,
391
400
(
2000
).
7.
V.
Lauer
, “
New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope
,”
J. Microsc.
205
,
165
176
(
2001
).
8.
P. S.
Carney
and
J. C.
Schotland
, “
Inverse scattering for near-field microscopy
,”
Appl. Phys. Lett.
77
,
2798
2800
(
2000
).
9.
G.
Gbur
and
E.
Wolf
, “
Hybrid diffraction tomography without phase information
,”
J. Opt. Soc. Am. A
19
,
2194
2202
(
2002
).
10.
R.
Muller
,
M.
Kaveh
, and
G.
Wade
, “
Reconstructive tomography and applications to ultrasonics
,”
Proc. IEEE
67
,
567
587
(
1979
).
11.
J. F.
Greenleaf
, “
Computerized tomography with ultrasound
,”
Proc. IEEE
71
,
330
337
(
1983
).
12.
M.
Kaveh
,
R.
Mueller
,
R.
Rylander
,
T.
Coulter
, and
M.
Soumekh
, “
Experimental results in ultrasonic diffraction tomography
,”
Acoust. Imaging
9
,
433
450
(
1979
).
13.
S. J.
Norton
and
M.
Linzer
, “
Ultrasonic reflectivity imaging in three dimensions: Exact inverse scattering solutions for plane, cylindrical, and spherical apertures
,”
IEEE Trans. Biomed. Eng.
28
,
202
220
(
1981
).
14.
N.
Duric
,
P.
Littrup
,
E.
Holsapple
,
A.
Babkin
,
R.
Duncan
,
A.
Kalinin
,
R.
Pevzner
, and
M.
Tokarev
, “
Ultrasound tomography of breast tissue
,”
Proc. SPIE
5035
,
24
32
(
2003
).
15.
R.
Leach
,
S.
Azevedo
,
J.
Beryman
,
H.
Bertete-Aquirre
,
D.
Chambers
,
J.
Mast
,
P.
Littrup
,
N.
Duric
,
S.
Johnson
, and
F.
Wuebbeling
, “
Comparison of ultrasound tomography methods in circular geometry
,”
Proc. SPIE
4687
,
362
377
(
2002
).
16.
T. D.
Mast
, “
Wideband quantitative ultrasonic imaging by time-domain diffraction tomography
,”
J. Acoust. Soc. Am.
106
,
3061
3071
(
1999
).
17.
I.
Akiyama
,
N.
Takizawa
, and
A.
Ohya
, “
Narrow aperture phased array computed tomography
,”
Acoust. Imaging
25
,
163
170
(
2000
).
18.
M. P.
Andre
,
H. S.
Janee
,
P. J.
Martin
,
G. P.
Otto
,
B. A.
Spivey
, and
D. A.
Palmer
, “
High-speed data acquisition in a diffraction tomography system employing large-scale toroidal arrays
,”
Int. J. Imaging Syst. Technol.
8
,
137
147
(
1997
).
19.
F.
Natterer
and
F.
Wubbeling
, “
A propagation-backpropagation method for ultrasound tomography
,”
Inverse Probl.
11
,
1225
1232
(
1995
).
20.
N.
Sponheim
,
L. J.
Gelius
,
I.
Johansen
, and
J. J.
Stamnes
, “
Quantitative results in ultrasonic tomography of large object using line sources and curved detector arrays
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
38
,
370
379
(
1991
).
21.
N.
Baddour
, “
Theory and analysis of frequency-domain photoacoustic tomography
,”
J. Acoust. Soc. Am.
123
,
2577
2590
(
2008
).
22.
M.
Xu
,
Y.
Xu
, and
L. V.
Wang
, “
Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries
,”
IEEE Trans. Biomed. Eng.
50
,
1086
1099
(
2003
).
23.
Y.
Huang
and
M. A.
Anastasio
, “
Statistically principled use of in-line measurements in intensity diffraction tomography
,”
J. Opt. Soc. Am. A
24
,
626
642
(
2007
).
24.
M. A.
Anastasio
and
D.
Shi
, “
On the relationship between intensity diffraction tomography and phase-contrast tomography
,”
Proc. SPIE
5535
,
361
368
(
2004
).
25.
C.-Y.
Chou
,
Y.
Huang
,
D.
Shi
, and
M. A.
Anastasio
, “
Image reconstruction in quantitative x-ray phase-contrast imaging employing multiple measurements
,”
Opt. Express
15
,
10002
10025
(
2007
).
26.
A. J.
Devaney
, “
Variable density acoustic tomography
,”
J. Acoust. Soc. Am.
78
,
120
130
(
1985
).
27.
S. J.
Norton
, “
Generation of separate compressibility and density images in tissue
,”
Ultrason. Imaging
5
,
240
252
(
1983
).
28.
A.
Witten
,
J.
Tuggle
, and
R.
Waag
, “
A practical approach to ultrasonic imaging using diffraction tomography
,”
J. Acoust. Soc. Am.
83
,
1645
1652
(
1988
).
29.
M.
Moghaddam
and
W. C.
Chew
, “
Variable density linear acoustic inverse problem
,”
Ultrason. Imaging
15
,
255
266
(
1993
).
30.
S.
Mensah
and
J. P.
Lefebvre
, “
Enhanced compressibility tomography
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
44
,
1245
1252
(
1997
).
31.
P. M.
Morse
and
K. U.
Ingard
,
Theoretical Acoustics
(
McGraw-Hill
,
New York
,
1968
).
32.
M.
Born
and
E.
Wolf
,
Principles of Optics
, 7th ed. (
Cambridge University Press
,
Cambridge, UK
,
1999
).
33.
B.
Chen
and
J. J.
Stamnes
, “
Validity of diffraction tomography based on the first-Born and first-Rytov approximations
,”
Appl. Opt.
37
,
2996
3006
(
1998
).
34.
M.
Moghaddam
and
W. C.
Chew
, “
Simultaneous inversion of compressibility and density in the acoustic inverse problem
,”
Inverse Probl.
9
,
715
730
(
1993
).
35.
Z.-Q.
Lu
and
Y.-Y.
Zhang
, “
Acoustical tomography based on the second-order Born transform perturbation approximation
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
43
,
296
302
(
1996
).
36.
G.
Tsihrintzis
and
A.
Devaney
, “
Higher order (nonlinear) diffraction tomography: Inversion of the Rytov series
,”
IEEE Trans. Inf. Theory
46
,
1748
1761
(
2000
).
37.
M. A.
Anastasio
,
D.
Shi
, and
T.
Deffieux
, “
Image reconstruction in variable density acoustic tomography
,”
Proc. SPIE
5750
,
326
331
(
2005
).
38.
Z.
Lu
, “
Multidimensional structure diffraction tomography for varying object orientation through generalised scattered waves
,”
Inverse Probl.
1
,
339
356
(
1985
).
39.
X.
Pan
, “
Consistency conditions and linear reconstruction methods in diffraction tomography
,”
IEEE Trans. Med. Imaging
19
,
51
54
(
2000
).
40.
M.
Bertero
and
P.
Boccacci
,
Introduction to Inverse Problems in Imaging
(
Institute of Physics
,
Bristol
,
1998
).
41.
R.
Bernier
and
H. H.
Arsenault
, “
Deconvolution of two-dimensional images with zeros in the transfer function
,”
Appl. Opt.
30
,
5163
5168
(
1991
).
42.
N.
Takai
,
H.
Kadono
, and
T.
Asakura
, “
Statistical properties of the speckle phase in image and diffraction fields
,”
Opt. Eng. (Bellingham)
25
,
627
635
(
1986
).
43.
M. A.
Anastasio
,
D.
Shi
,
Y.
Huang
, and
G.
Gbur
, “
Image reconstruction in spherical wave intensity diffraction tomography
,”
J. Opt. Soc. Am. A
22
,
2651
2661
(
2005
).
44.
M. A.
Anastasio
,
Q.
Xu
, and
D.
Shi
, “
Multispectral intensity diffraction tomography: Single material objects with variable densities
,”
J. Opt. Soc. Am. A
26
,
403
412
(
2009
).
45.
Q.
Zhu
and
B.
Steinberg
, “
Wavefront amplitude distortion and image sidelobe levels: Part I—Theory and computer simulations
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
40
,
747
753
(
1993
).
You do not currently have access to this content.