Optical tracking was utilized to investigate the acoustic radiation force impulse (ARFI)-induced response, generated by a 5-MHz piston transducer, in a translucent tissue-mimicking phantom. Suspended 10-μm microspheres were tracked axially and laterally at multiple locations throughout the field of view of an optical microscope with 0.5-μm displacement resolution, in both dimensions, and at frame rates of up to 36 kHz. Induced dynamics were successfully captured before, during, and after the ARFI excitation at depths of up to 4.8 mm from the phantom’s proximal boundary. Results are presented for tracked axial and lateral displacements resulting from on-axis and off-axis (i.e., shear wave) acquisitions; these results are compared to matched finite element method modeling and independent ultrasonically based empirical results and yielded reasonable agreement in most cases. A shear wave reflection, generated by the proximal boundary, consistently produced an artifact in tracked displacement data later in time (i.e., after the initial ARFI-induced displacement peak). This tracking method provides high-frame-rate, two-dimensional tracking data and thus could prove useful in the investigation of complex ARFI-induced dynamics in controlled experimental settings.

1.
K. R.
Nightingale
,
M. L.
Palmeri
,
R. W.
Nightingale
, and
G. E.
Trahey
, “
On the feasibility of remote palpation using acoustic radiation force
,”
J. Acoust. Soc. Am.
110
,
625
634
(
2001
).
2.
D.
Melodelima
,
J.
Bamber
,
F.
Duck
,
J.
Shipley
, and
L.
Xu
, “
Elastography for breast cancer diagnosis using radiation force: System development and performance evaluation
,”
Ultrasound Med. Biol.
32
,
387
396
(
2006
).
3.
Y. A.
Ilinskii
,
G. D.
Meegan
,
E. A.
Zabolotskaya
, and
S. Y.
Emelianov
, “
Gas bubble and solid sphere motion in elastic media in response to acoustic radiation force
,”
J. Acoust. Soc. Am.
117
,
2338
2346
(
2005
).
4.
R. H.
Behler
,
T. C.
Nichols
,
H.
Zhu
,
E. P.
Merricks
, and
C. M.
Gallippi
, “
ARFI imaging for noninvasive material characterization of atherosclerosis Part II: Toward in vivo characterization
,”
Ultrasound Med. Biol.
35
,
278
295
(
2009
).
5.
J.
Bercoff
,
M.
Tanter
, and
M.
Fink
, “
Supersonic shear imaging: A new technique for soft tissue elasticity mapping
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
51
,
396
409
(
2004
).
6.
A.
Sarvazyan
,
O.
Rudenko
,
S.
Swanson
,
J.
Fowlkes
, and
S.
Emelianov
, “
Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics
,”
Ultrasound Med. Biol.
24
,
1419
1435
(
1998
).
7.
S. A.
McAleavey
,
M.
Menon
, and
J.
Orszulak
, “
Shear-modulus estimation by application of spatially-modulated impulsive acoustic radiation force
,”
Ultrason. Imaging
2
,
87
104
(
2007
).
8.
E. E.
Konofagou
and
K.
Hynynen
, “
Localized harmonic motion imaging: Theory, simulations and experiments
,”
Ultrasound Med. Biol.
29
,
1405
1413
(
2003
).
9.
M.
Fatemi
and
J. F.
Greenleaf
, “
Vibro-acoustography: An imaging modality based on ultrasound-stimulated acoustic emission
,”
Proc. Natl. Acad. Sci. U.S.A.
96
,
6603
6608
(
1999
).
10.
F.
Viola
and
W. F.
Walker
, “
Radiation force imaging of viscoelastic properties with reduced artifacts
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
50
,
736
742
(
2003
).
11.
J.
Ophir
,
I.
Céspedes
,
H.
Ponnekanti
,
Y.
Yazdi
, and
X.
Li
, “
Elastography: A quantitative method for imaging the elasticity of biological tissues
,”
Ultrason. Imaging
13
,
111
134
(
1991
).
12.
K.
Hoyt
,
T.
Kneezel
,
B.
Castaneda
, and
K. J.
Parker
, “
Quantitative sonoelastography for the in vivo assessment of skeletal muscle viscoelasticity
,”
Phys. Med. Biol.
53
,
4063
4080
(
2008
).
13.
S. J.
Hsu
,
R. R.
Bouchard
,
D. M.
Dumont
,
P. D.
Wolf
, and
G. E.
Trahey
, “
In vivo assessment of myocardial stiffness with acoustic radiation force impulse imaging
,”
Ultrasound Med. Biol.
33
,
1706
1719
(
2007
).
14.
J. L.
Gennisson
,
S.
Catheline
,
S.
Chaffaï
, and
M.
Fink
, “
Transient elastography in anisotropic medium: Application to the measurement of slow and fast shear wave speeds in muscles
,”
J. Acoust. Soc. Am.
114
,
536
541
(
2003
).
15.
H.
Kanai
, “
Propagation of spontaneously actuated pulsive vibration in human heart wall in in vivo viscoelasticity estimation
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
52
,
1931
1942
(
2005
).
16.
M. L.
Palmeri
,
A. C.
Sharma
,
R. R.
Bouchard
,
R. W.
Nightingale
, and
K. R.
Nightingale
, “
A finite-element method model of soft tissue response to impulsive acoustic radiation force
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
52
,
1699
1712
(
2005
).
17.
P. J.
Westervelt
, “
The theory of steady forces caused by sound waves
,”
J. Acoust. Soc. Am.
23
,
312
315
(
1951
).
18.
M. E.
Lyons
and
K. J.
Parker
, “
Absorption and attenuation in soft tissues. II. Experimental results
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
35
,
511
521
(
1988
).
19.
W.
Nyborg
, “
Acoustic streaming
,” in
Physical Acoustics
, edited by
W.
Mason
(
Academic
,
New York
,
1965
), Vol.
IIB
, Chap. 11, pp.
265
331
.
20.
G. R.
Torr
, “
The acoustic radiation force
,”
Am. J. Phys.
52
,
402
408
(
1984
).
21.
W.
Lai
,
D.
Rubin
, and
E.
Krempl
,
Introduction to Continuum Mechanics
(
Butterworth-Heinemann
,
Woburn, MA
,
1999
).
22.
J.
Bishop
,
G.
Poole
, and
D.
Plewes
, “
Magnetic resonance imaging of shear wave propagation in excised tissue
,”
J. Magn. Reson. Imaging
8
,
1257
1265
(
1998
).
23.
M.
Fatemi
and
J. F.
Greenleaf
,
Topics in Applied Physics
(
Springer Berlin
,
Heidelberg
,
2002
), Vol.
84
, pp.
257
276
.
24.
M. L.
Palmeri
,
S. A.
McAleavey
,
K. L.
Fong
,
G. E.
Trahey
, and
K. R.
Nightingale
, “
Dynamic mechanical response of elastic spherical inclusions to impulse acoustic radiation force excitation
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
53
,
2065
2079
(
2006
).
25.
G. F.
Pinton
,
J. J.
Dahl
, and
G. E.
Trahey
, “
Rapid tracking of small displacements with ultrasound
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
53
,
1103
1117
(
2006
).
26.
M. A.
Lubinski
,
S. Y.
Emelianov
,
K. R.
Raghavan
,
A. E.
Yagle
,
A. R.
Skovoroda
, and
M.
O’Donnell
, “
Lateral displacement estimation using tissue incompressibility
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
43
,
247
256
(
1996
).
27.
R. R.
Bouchard
,
J. J.
Dahl
,
S. J.
Hsu
,
M. L.
Palmeri
, and
G. E.
Trahey
, “
Image quality, tissue heating, and frame rate trade-offs in acoustic radiation force impulse imaging
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
56
,
63
76
(
2009
).
28.
C.
Maleke
,
M.
Pernot
, and
E. E.
Konofagou
, “
Single-element focused ultrasound transducer method for harmonic motion imaging
,”
Ultrason. Imaging
28
,
144
158
(
2006
).
29.
M. L.
Palmeri
,
S. A.
McAleavey
,
G. E.
Trahey
, and
K. R.
Nightingale
, “
Ultrasonic tracking of acoustic radiation force-induced displacements in homogeneous media
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
53
,
1300
1313
(
2006
).
30.
J.
Schmitt
, “
OCT elastography: Imaging microscopic deformation and strain of tissue
,”
Opt. Express
3
,
199
211
(
1998
).
31.
V. G.
Andreev
,
V. N.
Dmitriev
,
Y. A.
Pischal’nikov
,
O. V.
Rudenko
,
O. A.
Sapozhnikov
, and
A. P.
Sarvazyan
, “
Observation of shear waves excited by focused ultrasound in a rubber-like media
,”
Acoust. Phys.
43
,
123
128
(
1996
).
32.
E.
Bossy
,
A. R.
Funke
,
K.
Daoudi
,
A. -C.
Boccara
,
M.
Tanter
, and
M.
Fink
, “
Transient optoelastography in optically diffusive media
,”
Appl. Phys. Lett.
90
,
174111
(
2007
).
33.
P. A.
Dayton
,
K. E.
Morgan
,
A. L.
Klibanov
,
G.
Brandenburger
,
K. R.
Nightingale
, and
K. W.
Ferrara
, “
A preliminary evaluation of the effects of primary and secondary radiation forces on acoustic contrast agents
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
44
,
1264
1277
(
1997
).
34.
P.
Palanchon
,
P.
Tortoli
,
A.
Bouakaz
,
M.
Versluis
, and
N.
de Jong
, “
Optical observation of acoustical radiation force effects on individual air bubbles
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
52
,
104
110
(
2005
).
35.
P. A.
Dayton
,
J. S.
Allen
, and
K. W.
Ferrara
, “
The magnitude of radiation force on ultrasound contrast agents
,”
J. Acoust. Soc. Am.
112
,
2183
2192
(
2002
).
36.
R. R.
Bouchard
,
G.
van Soest
,
G. E.
Trahey
, and
A. F. W.
van der Steen
, “
Optical tracking of superficial dynamics from an acoustic radiation force-induced excitation
,”
Ultrason. Imaging
31
,
17
30
(
2009
).
37.
M. C. W.
van Rossum
and
T. M.
Nieuwenhuizen
, “
Multiple scattering of classical waves: Microscopy, mesoscopy, and diffusion
,”
Rev. Mod. Phys.
71
,
313
371
(
1999
).
38.
P.
Sheng
,
Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena
(
Academic
,
New York
,
1995
).
39.
K.
Takegami
,
Y.
Kaneko
,
T.
Watanabe
,
T.
Maruyama
,
Y.
Matsumoto
, and
H.
Nagawa
, “
Polyacrylamide gel containing egg white as new model for irradiation experiments using focused ultrasound
,”
Ultrasound Med. Biol.
30
,
1419
1422
(
2004
).
40.
T. J.
Hall
,
M.
Bilgen
,
M. F.
Insana
, and
T. A.
Krouskop
, “
Phantom materials for elastography
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
44
,
1355
1365
(
1997
).
41.
F. W.
Kremkau
,
R. W.
Barnes
, and
P.
McGraw
, “
Ultrasonic attenuation and propagation speed in normal human brain
,”
J. Acoust. Soc. Am.
70
,
29
38
(
1981
).
42.
M. L.
Palmeri
,
M. H.
Wang
,
J. J.
Dahl
,
K. D.
Frinkley
, and
K. R.
Nightingale
, “
Quantifying hepatic shear modulus in vivo using acoustic radiation force
,”
Ultrasound Med. Biol.
34
,
546
558
(
2008
).
43.
J. A.
Jensen
and
N. B.
Svendsen
, “
Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
39
,
262
267
(
1992
).
44.
J. A.
Jensen
, “
Field: A program for simulating ultrasound systems
,” in
Proceedings of the 10th Nordic-Baltic Conference on Biomedical Imaging
(
1996
), Vol.
34
, pp.
351
353
.
45.
M.
Palmeri
and
K.
Nightingale
, “
On the thermal effects associated with radiation force imaging of soft tissue
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
51
,
551
565
(
2004
).
You do not currently have access to this content.