Tonpilz transducers are fabricated from 001 fiber-textured 0.72Pb(Mg1/3Nb2/3)O30.28PbTiO3 (PMN-28PT) ceramics, obtained by the templated grain growth process, and PMN-28PT ceramic and Bridgman grown single crystals of the same composition. In-water characterization of single element transducers shows higher source levels, higher in-water coupling, and more usable bandwidth for the 81 vol % textured PMN-28PT device than for the ceramic PMN-28PT element. The 81 vol % textured PMN-28PT tonpilz element measured under large signals shows linearity in sound pressure levels up to 0.23 MV/m drive field but undergoes a phase transition due to a lowered transition temperature from the SrTiO3 template particles. Although the textured ceramic performs well in this application, it could be further improved with compositional tailoring to raise the transition temperature and better processing to improve the texture quality. With these improvements textured piezoelectric ceramics will be viable options for medical ultrasound, actuators, and sonar applications because of their ease of processing, compositional homogeneity, and potentially lower cost than single crystal.

1.
F. A.
Fischer
,
Fundamentals of Electroacoustics
, 1st ed. (
Interscience
,
New York
,
1955
).
2.
D.
Stansfield
,
Underwater Electroacoustic Transducers
(
Peninsula
,
Los Altos Hills, CA
,
1991
), pp.
179
195
.
3.
J. M.
Powers
,
M. B.
Moffett
, and
F.
Nussbaum
, “
Single crystal naval transducer development
,” presented at the
Proceedings of the 12th IEEE International Symposium on Applications of Ferroelectrics
(
2000
).
4.
K. A.
Snook
,
P. W.
Rehrig
,
W. S.
Hackenberger
,
X.
Jiang
,
R. J.
Meyer
, and
D.
Markley
, “
Advanced piezoelectric single crystal based transducers for naval sonar applications
,”
Proc. SPIE
5761
,
263
271
(
2005
).
5.
R. J.
Meyer
, Jr.
,
T. C.
Montgomery
, and
W. J.
Hughes
, “
Tonpilz transducers designed using single crystal piezoelectrics
,” presented at the
Oceans 2002 IEEE/MTS
, Biloxi, MS (
2002
), pp.
29
31
.
6.
S.
Kwon
,
E. M.
Sabolsky
,
G. L.
Messing
, and
S.
Trolier-McKinstry
, “
High strain, 001 textured 0.675Pb(Mg1/3Nb2/3)O30.325PbTiO3 ceramics: Templated grain growth and piezoelectric properties
,”
J. Am. Ceram. Soc.
88
,
312
317
(
2005
).
7.
E. M.
Sabolsky
,
A. R.
James
,
S.
Kwon
,
S.
Trolier-McKinstry
, and
G. L.
Messing
, “
Piezoelectric properties of 001 textured Pb(Mg1/3Nb2/3)O3PbTiO3 ceramics
,”
Appl. Phys. Lett.
78
,
2551
2553
(
2001
).
8.
E. M.
Sabolsky
,
S.
Trolier-McKinstry
, and
G. L.
Messing
, “
Dielectric and piezoelectric properties of 001 fiber-textured 0.675Pb(Mg1/3Nb2/3)O30.325PbTiO3 ceramics
,”
J. Appl. Phys.
93
,
4072
4080
(
2003
).
9.
K. H.
Brosnan
,
G. L.
Messing
,
R. J.
Meyer
, and
M. D.
Vaudin
, “
Texture measurements in 001 fiber-oriented PMN-PT
,”
J. Am. Ceram. Soc.
89
,
1965
1971
(
2006
).
10.
K. H.
Brosnan
,
S. F.
Poterala
,
R. J.
Meyer
,
S.
Misture
, and
G. L.
Messing
, “
Templated grain growth of 001 textured PMN-28PT using SrTiO3 templates
,”
J. Am. Ceram. Soc.
92
,
S133
S139
(
2009
).
11.
B.
Jaffe
,
W. R.
Cook
, and
H.
Jaffe
,
Piezoelectric Ceramics
(
Academic
,
New York
,
1971
).
12.
E. M.
Sabolsky
, “
Grain-oriented Pb(Mg1/3Nb2/3)O3PbTiO3 ceramics prepared by templated grain growth
,” Ph.D. thesis,
The Pennsylvania State University
, University Park, PA (
2001
).
13.
E. A.
McLaughlin
,
T. Q.
Liu
, and
C. S.
Lynch
, “
Relaxor ferroelectric PMN-32%PT crystals under stress, electric field and temperature loading: II-33-mode measurements
,”
Acta Mater.
53
,
4001
4008
(
2005
).
14.
D.
Viehland
,
L.
Ewart
,
J.
Powers
, and
J. F.
Li
, “
Stress dependence of the electromechanical properties of 001-oriented Pb(Mg1/3Nb2/3)O3PbTiO3 crystals: Performance advantages and limitations
,”
J. Appl. Phys.
90
,
2479
2483
(
2001
).
15.
D.
Viehland
,
J. F.
Li
,
K.
Gittings
, and
A.
Amin
, “
Electroacoustic properties of 110-oriented Pb(Mg1/3Nb2/3)O3PbTiO3 crystals under uniaxial stress
,”
Appl. Phys. Lett.
83
,
132
134
(
2003
).
16.
R.
Yimnirun
, “
Contributions of domain-related phenomena on dielectric constant of lead-based ferroelectric ceramics under uniaxial compressive pre-stress
,”
Int. J. Mod. Phys. B
20
,
3409
3417
(
2006
).
17.
R.
Yimnirun
,
M.
Unruan
,
Y.
Laosiritaworn
, and
S.
Ananta
, “
Change of dielectric properties of ceramics in lead magnesium niobate-lead titanate system with compressive stress
,”
J. Phys. D
39
,
3097
3102
(
2006
).
18.
D.
Viehland
, “
Effect of uniaxial stress upon the electromechanical properties of various piezoelectric ceramics and single crystals
,”
J. Am. Ceram. Soc.
89
,
775
785
(
2006
).
19.
A. B.
Schaufele
and
K. H.
Hardtl
, “
Ferroelastic properties of lead zirconate titanate ceramics
,”
J. Am. Ceram. Soc.
79
,
2637
2640
(
1996
).
20.
D.
Viehland
,
J.
Powers
,
L.
Ewart
, and
J. F.
Li
, “
Ferroelastic switching and elastic nonlinearity in 001-oriented Pb(Mg1/3Nb2/3)O3PbTiO3 and Pb(Zn1/3Nb2/3)O3PbTiO3 crystals
,”
J. Appl. Phys.
88
,
4907
4909
(
2000
).
21.
L. E.
Kinsler
,
A. R.
Frey
,
A. B.
Coppens
, and
J. V.
Sanders
,
Fundamentals of Acoustics
, 4th ed. (
Wiley
,
Hoboken, NJ
,
2000
).
You do not currently have access to this content.