The volume of a bubble in a piezoinkjet printhead is measured acoustically. The method is based on a numerical model of the investigated system. The piezo not only drives the system but it is also used as a sensor by measuring the current it generates. The numerical model is used to predict this current for a given bubble volume. The inverse problem is to infer the bubble volume from an experimentally obtained piezocurrent. By solving this inverse problem, the size and position of the bubble can thus be measured acoustically. The method is experimentally validated with an inkjet printhead that is augmented with a glass connection channel, through which the bubble was observed optically, while at the same time the piezocurrent was measured. The results from the acoustical measurement method correspond closely to the results from the optical measurement.

1.
T. G.
Leighton
,
The Acoustic Bubble
(
Academic
,
London
,
1994
).
2.
C. E.
Brennen
,
Cavitation and Bubble Dynamics
(
Oxford University Press
,
Oxford
,
1995
).
3.
M. S.
Plesset
and
A.
Prosperetti
, “
Bubble dynamics and cavitation
,”
Annu. Rev. Fluid Mech.
9
,
145
185
(
1977
).
4.
M. P.
Brenner
,
S.
Hilgenfeldt
, and
D.
Lohse
, “
Single-bubble sonoluminescence
,”
Rev. Mod. Phys.
74
,
425
485
(
2002
).
5.
S.
Qin
and
K. W.
Ferrara
, “
Acoustic response of compliable microvessels containing ultrasound contrast agents
,”
Phys. Med. Biol.
51
,
5065
5088
(
2006
).
6.
S.
Qin
and
K. W.
Ferrara
, “
The natural frequency of oscillation of ultrasound contrast agents in microvessels
,”
Ultrasound Med. Biol.
33
,
1140
1148
(
2007
).
7.
C. F.
Caskey
,
S. M.
Stieger
,
S.
Qin
,
P. A.
Dayton
, and
K. W.
Ferrara
, “
Direct observations of ultrasound microbubble contrast agent interaction with the microvessel wall
,”
J. Acoust. Soc. Am.
122
,
1191
1200
(
2007
).
8.
V. S.
Ajaev
and
G. M.
Homsy
, “
Modeling shapes and dynamics of confined bubbles
,”
Annu. Rev. Fluid Mech.
38
,
277
307
(
2006
).
9.
A. L.
Klibanov
, “
Ultrasound contrast agents: Development of the field and current status
,”
Top. Curr. Chem.
222
,
73
106
(
2002
).
10.
R. J.
Dijkink
,
J. P.
van der Dennen
,
C. D.
Ohl
, and
A.
Prosperetti
, “
The ‘acoustic scallop’: A bubble-powered actuator
,”
J. Micromech. Microeng.
16
,
1653
(
2006
).
11.
K. S. F.
Lew
,
E.
Klaseboer
, and
B. C.
Khoo
, “
A collapsing bubble-induced micropump: An experimental study
,”
Sens. Actuators, A
133
,
161
172
(
2007
).
12.
J.
de Jong
,
R.
Jeurissen
,
H.
Borel
,
M.
van den Berg
,
M.
Versluis
,
H.
Wijshoff
,
A.
Prosperetti
,
H.
Reinten
, and
D.
Lohse
, “
Entrapped air bubbles in piezo-driven inkjet printing: Their effect on droplet velocity
,”
Phys. Fluids
18
,
121511
(
2006
).
13.
J.
de Jong
,
G.
de Bruin
,
H.
Reinten
,
M.
van den Berg
,
H.
Wijshoff
,
M.
Versluis
, and
D.
Lohse
, “
Air entrapment in piezo-driven inkjet printheads
,”
J. Acoust. Soc. Am.
120
,
1257
1265
(
2006
).
14.
R.
Jeurissen
,
J.
de Jong
,
H.
Reinten
,
M.
van den Berg
,
H.
Wijshoff
,
M.
Versluis
, and
D.
Lohse
, “
Effect of an entrained air bubble on the acoustics of an ink channel
,”
J. Acoust. Soc. Am.
123
,
2496
2505
(
2008
).
15.
B.
Krasovitski
and
E.
Kimmel
, “
Gas bubble pulsation in a semiconfined space subjected to ultrasound
,”
J. Acoust. Soc. Am.
109
,
891
898
(
2001
).
16.
P.
Zhong
,
Y.
Zhou
, and
S.
Zhu
, “
Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in swl
,”
Ultrasound Med. Biol.
27
,
119
134
(
2001
).
17.
J.
Cui
,
M.
Hamilton
,
P.
Wilson
, and
E.
Zabolotskaya
, “
Bubble pulsations between parallel plates
,”
J. Acoust. Soc. Am.
119
,
2067
2072
(
2006
).
18.
H.
Oguz
and
A.
Prosperetti
, “
The natural frequency of oscillation of gas bubbles in tubes
,”
J. Acoust. Soc. Am.
103
,
3301
(
1998
).
19.
E.
Sassaroli
and
K.
Hynynen
, “
Forced linear oscillations of microbubbles in blood capillaries
,”
J. Acoust. Soc. Am.
115
,
3235
3243
(
2004
).
20.
E.
Ory
,
H.
Yuan
,
A.
Prosperetti
,
S.
Popinet
, and
S.
Zaleski
, “
Growth and collapse of a vapor bubble in a narrow tube
,”
Phys. Fluids
12
,
1268
1277
(
2000
).
21.
K. S.
Kwon
and
W.
Kim
, “
A waveform design method for high-speed inkjet printing based on self-sensing measurement
,”
Sens. Actuators, A
140
,
75
83
(
2007
).
22.
J. F.
Dijksman
, “
Hydrodynamics of small tubular pumps
,”
J. Fluid Mech.
139
,
173
191
(
1984
).
23.
D. B.
Bogy
and
F. E.
Talke
, “
Experimental and theoretical study of wave propagation phenomena in drop-on-demand ink jet devices
,”
IBM J. Res. Dev.
28
,
314
321
(
1984
).
24.
M. A.
Groninger
,
P. G. M.
Kruijt
,
H.
Reinten
,
R. H.
Schippers
, and
J. M. M.
Simons
, “
A method of controlling an inkjet printhead, an inkjet printhead suitable for use of said method, and an inkjet printer comprising said printhead
,” European Patent No. EP 1 378 360 A1 (
2003
).
25.
J. R.
Womersley
, “
Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known
,”
J. Physiol.
127
,
553
563
(
1955
).
26.
T.
Young
, “
Hydraulic investigations, subservient to an intended Croonian Lecture on the motion of the blood
,”
Philos. Trans. R. Soc. London
98
,
164
186
(
1808
).
27.
H.
Callen
,
Thermodynamics and an Introduction to Thermostatistics
(
Wiley
,
New York
,
1985
).
28.
L. F.
Shampine
and
S.
Thompson
, “
Solving DDEs in MATLAB
,”
Appl. Numer. Math.
37
,
441
458
(
2001
).
You do not currently have access to this content.