Power series expansions in ka are derived for the pressure at the edge of a radiator, the reaction force on the radiator, and the total radiated power arising from a harmonically excited, resilient, flat, circular radiator of radius a in an infinite baffle. The velocity profiles on the radiator are either Stenzel functions (1(σa)2)n, with σ the radial coordinate on the radiator, or linear combinations of Zernike functions Pn(2(σa)21), with Pn the Legendre polynomial of degree n. Both sets of functions give rise, via King’s integral for the pressure, to integrals for the quantities of interest involving the product of two Bessel functions. These integrals have a power series expansion and allow an expression in terms of Bessel functions of the first kind and Struve functions. Consequently, many of the results in [M. Greenspan, J. Acoust. Soc. Am.65, 608621 (1979)] are generalized and treated in a unified manner. A foreseen application is for loudspeakers. The relation between the radiated power in the near-field on one hand and in the far field on the other is highlighted.

1.
D. T.
Blackstock
,
Fundamentals of Physical Acoustics
(
Wiley
,
New York
,
2000
).
2.
L. E.
Kinsler
,
A. R.
Frey
,
A. B.
Coppens
, and
J. V.
Sanders
,
Fundamentals of Acoustics
(
Wiley
,
New York
,
1982
).
3.
P. M.
Morse
and
K. U.
Ingard
,
Theoretical Acoustics
(
McGraw-Hill
,
New York
,
1968
).
4.
A. D.
Pierce
,
Acoustics: An Introduction to Its Physical Principles and Applications
(
Acoustical Society of America through the American Institue of Physics
,
New York
,
1989
).
5.
H.
Stenzel
and
O.
Brosze
,
Guide to Computation of Sound Phenomena (Leitfaden zur Berechnung von Schallvorgängen)
, 2nd ed. (
Springer-Verlag
,
Berlin
,
1958
).
6.
M.
Greenspan
, “
Piston radiator: Some extensions of the theory
,”
J. Acoust. Soc. Am.
65
,
608
621
(
1979
).
7.
G. R.
Harris
, “
Review of transient field theory for a baffled planar piston
,”
J. Acoust. Soc. Am.
70
,
10
20
(
1981
).
8.
H.
Stenzel
, “
On the acoustical radiation of membranes (published in German as Über die akustische Strahlung von Membranen)
,”
Ann. Phys.
7
,
947
982
(
1930
).
9.
L. V.
King
, “
On the acoustic radiation field of the piezo-electric oscillator and the effect of viscosity on transmission
,”
Can. J. Res.
11
,
135
155
(
1934
).
10.
A.
Schoch
, “
Contemplations on the sound field of piston membranes (published in German as Betrachtungen über das Schallfeld einer Kolbenmembran)
,”
Akust. Z.
6
,
318
326
(
1941
).
11.
J. A.
Archer-Hall
,
A. I.
Bashter
, and
A. J.
Hazelwood
, “
A means for computing the Kirchhoff surface integral for a disk radiator as a single integral with fixed limits
,”
J. Acoust. Soc. Am.
65
,
1568
1570
(
1979
).
12.
C. J.
Bouwkamp
, “
A contribution to the theory of acoustic radiation
,”
Philips Res. Rep.
1
,
251
277
(
1946
).
13.
F.
Oberhettinger
, “
On transient solutions of the “baffled piston” problem
,”
J. Res. Natl. Bur. Stand., Sect. B
65B
,
1
6
(
1961
).
14.
T.
Hansen
, “
Probe-corrected near-field measurements on a truncated cylinder
,”
J. Acoust. Soc. Am.
119
,
792
807
(
2006
).
15.
D. A.
Hutchins
,
H. D.
Mair
,
P. A.
Puhach
, and
A. J.
Osei
, “
Continuous-wave pressure fields of ultrasonic transducers
,”
J. Acoust. Soc. Am.
80
,
1
12
(
1986
).
16.
R. J.
McGough
,
T. V.
Samulski
, and
J. F.
Kelly
, “
An efficient grid sectoring method for calculations of the near field pressure generated by a circular piston
,”
J. Acoust. Soc. Am.
115
,
1942
1954
(
2004
).
17.
J. F.
Kelly
and
R. J.
McGough
, “
An annular superposition integral for axisymmetric radiators
,”
J. Acoust. Soc. Am.
121
,
759
765
(
2007
).
18.
T. D.
Mast
and
F.
Yu
, “
Simplified expansions for radiation from a baffled circular piston
,”
J. Acoust. Soc. Am.
118
,
3457
3464
(
2005
).
19.
T.
Mellow
, “
On the sound field of a resilient disk in an infinite baffle
,”
J. Acoust. Soc. Am.
120
,
90
101
(
2006
).
20.
R. C.
Wittmann
and
A. D.
Yaghjian
, “
Spherical-wave expansions of piston-radiator fields
,”
J. Acoust. Soc. Am.
90
,
1647
1655
(
1991
).
21.
R. M.
Aarts
and
A. J.E.M.
Janssen
, “
On-axis and far-field sound radiation from resilient flat and dome-shaped radiators
,”
J. Acoust. Soc. Am.
125
,
1444
1455
(
2009
).
22.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1972
).
23.
T.
Hasegawa
,
N.
Inoue
, and
K.
Matsuzawa
, “
A new rigorous expansion for the velocity potential of a circular piston source
,”
J. Acoust. Soc. Am.
74
,
1044
1047
(
1983
).
24.
N. W.
McLachlan
, “
The acoustic and inertia pressure at any point on a vibrating circular disk
,”
Philosophical Magazine and Journal of Science
14
,
1012
1025
(
1932
).
25.
F.
Zernike
, “
Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der Phasenkontrastmethode (Diffraction theory of the knife-edge test and its improved version, the phase-contrast method)
,”
Physica (Amsterdam)
1
,
689
704
(
1934
).
26.
J. W.S.
Rayleigh
,
The Theory of Sound
(
Dover
,
New York
,
1896
), Vol.
2
.
27.
B. R.A.
Nijboer
, “
The diffraction theory of aberrations
,” Ph.D. thesis,
University of Groningen
, The Netherlands,
1942
.
28.
A. G.
Warren
, “
A note on the acoustic pressure and velocity relations on a circular disc and in a circular orifice
,”
Proc. Phys. Soc. London
40
,
296
299
(
1928
).
29.
R. M.
Aarts
and
A. J.E.M.
Janssen
, “
Approximation of the Struve function H1(z) occurring in impedance calculations
,”
J. Acoust. Soc. Am.
113
,
2635
2637
(
2003
).
30.
A. P.
Prudnikov
,
Yu. A.
Brychkov
, and
O. I.
Marichev
,
Integrals and Series, Volume 2: Special Functions
, (
Gordon and Breach Science
,
New York
,
1986
).
31.
G. N.
Watson
,
A Treatise on the Theory of Bessel Functions
(
Cambridge University Press
,
Cambridge
,
1944
).
You do not currently have access to this content.