The estimation of the impulse response (IR) of a propagation channel may be of great interest for a large number of underwater applications: underwater communications, sonar detection and localization, marine mammal monitoring, etc. It quantifies the distortions of the transmitted signal in the underwater channel and enables geoacoustic inversion. The propagating signal is usually subject to additional and undesirable distortions due to the motion of the transmitter-channel-receiver configuration. This paper shows the effects of the motion while estimating the IR by matched filtering between the transmitted and the received signals. A methodology to compare IR estimation with and without motion is presented. Based on this comparison, a method for motion effect compensation is proposed in order to reduce motion-induced distortions. The proposed methodology is applied to real data sets collected in 2007 by the Service Hydrographique et Océanographique de la Marine in a shallow water environment, proving its interest for motion effect analysis. Motion compensated estimation of IRs is computed from sources transmitting broadband linear frequency modulations moving at up to 12knots in the shallow water environment of the Malta plateau, South of Sicilia.

1.
Z. H.
Michalopoulou
, “
Matched-impulse-response processing for shallow-water localization and geoacoustic inversion
,”
J. Acoust. Soc. Am.
108
,
2082
2090
(
2000
).
2.
M. I.
Taroudakis
and
G.-N.
Makrakis
,
Inverse Problems in Underwater Acoustics
(
Springer-Verlag
,
New York
,
2001
).
3.
A.
Baggeroer
,
W.
Kuperman
, and
P.
Mikhalevsky
, “
An overview of matched field methods in ocean acoustics
,”
IEEE J. Ocean. Eng.
18
,
401
424
(
1993
).
4.
C.
Gervaise
,
S.
Vallez
,
Y.
Stephan
, and
Y.
Simard
, “
Robust 2d localization of low-frequency calls in shallow waters using modal propagation modelling
,”
Can. Acoust.
36
,
153
159
(
2008
).
5.
C.
Gervaise
,
S.
Vallez
,
C.
Ioana
,
Y.
Stephan
, and
Y.
Simard
, “
Passive acoustic tomography: New concepts and applications using marine mammals: A review
,”
J. Mar. Biol. Assoc. U.K.
87
,
5
10
(
2007
).
6.
S.
Qian
and
D.
Chen
, “
Signal representation using adaptive normalized Gaussian functions
,”
Signal Process.
36
,
1
11
(
1994
).
7.
S.
Mallat
and
Z.
Zhang
, “
Matching pursuits with time-frequency dictionaries
,”
IEEE Trans. Signal Process.
41
,
3397
3415
(
1993
).
8.
H.
Zou
,
Y.
Chen
,
J.
Zhu
,
Q.
Dai
,
G.
Wu
, and
Y.
Li
, “
Steady-motion-based Dopplerlet transform: Application to the estimation of range and speed of a moving sound source
,”
IEEE J. Ocean. Eng.
29
,
887
905
(
2004
).
9.
A. N.
Guthrie
,
R. M.
Fitzgerald
,
D. A.
Nutile
, and
J. D.
Shaffer
, “
Long-range low-frequency cw propagation in the deep ocean: Antigua-Newfoundland
,”
J. Acoust. Soc. Am.
56
,
58
69
(
1974
).
10.
K. E.
Hawker
, “
A normal mode theory of acoustic Doppler effects in the oceanic waveguide
,”
J. Acoust. Soc. Am.
65
,
675
681
(
1979
).
11.
P. H.
Lim
and
J. M.
Ozard
, “
On the underwater acoustic field of a moving point source. I. Range-independent environment
,”
J. Acoust. Soc. Am.
95
,
131
137
(
1994
).
12.
R. P.
Flanagan
,
N. L.
Weinberg
, and
J. G.
Clark
, “
Coherent analysis of ray propagation with moving source and fixed receiver
,”
J. Acoust. Soc. Am.
56
,
1673
1680
(
1974
).
13.
J. G.
Clark
,
R. P.
Flanagan
, and
N. L.
Weinberg
, “
Multipath acoustic propagation with a moving source in a bounded deep ocean channel
,”
J. Acoust. Soc. Am.
60
,
1274
1284
(
1976
).
14.
J. P.
Hermand
and
W. I.
Roderick
, “
Delay-Doppler resolution performance of large time-bandwidth-product linear fm signals in a multipath ocean environment
,”
J. Acoust. Soc. Am.
84
,
1709
1727
(
1988
).
15.
C. L.
Pekeris
, “
Theory of propagation of explosive sound in shallow water
,”
Propagation of Sound in the Ocean
(
Geological Society of America
,
New York
,
1948
), Memoir 27, pp.
1
117
.
16.
F. B.
Jensen
,
W. A.
Kuperman
, and
H.
Schmidt
,
Computational Ocean Acoustics
(
AIP
,
New York
,
1994
).
17.
S.
Kramer
, “
Doppler and acceleration tolerances of high-gain, wideband linear fm correlation sonars
,”
Proc. IEEE
55
,
627
636
(
1967
).
18.
W.
Adams
,
J.
Kuhn
, and
W.
Whyland
, “
Correlator compensation requirements for passive time-delay estimation with moving source or receivers
,”
IEEE Trans. Acoust., Speech, Signal Process.
28
,
158
168
(
1980
).
19.
B.
Harris
and
S.
Kramer
, “
Asymptotic evaluation of the ambiguity functions of high-gain fm matched filter sonar systems
,”
Proc. IEEE
56
,
2149
2157
(
1968
).
20.
N. F.
Josso
,
C.
Ioana
,
C.
Gervaise
,
Y.
Stephan
, and
J. I.
Mars
, “
Motion effect modeling in multipath configuration using warping based lag-Doppler filtering
,”
IEEE Trans. Acoust., Speech, Signal Process.
2009
,
2301
2304
.
21.
G.
Theuillon
and
Y.
Stephan
, “
Geoacoustic characterization of the seafloor from a subbottom profiler applied to the BASE’07 experiment
,”
J. Acoust. Soc. Am.
123
,
3108
(
2008
).
22.
N.
Josso
,
C.
Ioana
,
C.
Gervaise
, and
J. I.
Mars
, “
On the consideration of motion effects in underwater geoacoustic inversion
,”
J. Acoust. Soc. Am.
123
,
3625
(
2008
).
23.
N. F.
Josso
,
C.
Ioana
,
J. I.
Mars
,
C.
Gervaise
, and
Y.
Stephan
, “
Warping based lag-Doppler filtering applied to motion effect compensation in acoustical multipath propagation
,”
J. Acoust. Soc. Am.
125
,
2541
(
2009
).
You do not currently have access to this content.