Research on the propagation of acoustic waves in the ocean bottom sediment is of interest for active sonar applications such as target detection and remote sensing. The interaction of acoustic energy with the sea floor sublayers is usually modeled with techniques based on the full solution of the wave equation, which sometimes leads to mathematically intractable problems. An alternative way to model wave propagation in layered media containing random scatterers is the radiative transfer (RT) formulation, which is a well established technique in the electromagnetics community and is based on the principle of conservation of energy. In this paper, the RT equation is used to model the backscattering of acoustic energy from a layered elastic bottom sediment containing distributions of independent scatterers due to a constant single frequency excitation in the water column. It is shown that the RT formulation provides insight into the physical phenomena of scattering and conversion of energy between waves of different polarizations.

1.
D. R.
Jackson
and
M. D.
Richardson
,
High-Frequency Seafloor Acoustics
, 1st ed. (
Springer
,
New York
,
2007
).
2.
D. R.
Jackson
,
D. P.
Winebrenner
, and
A.
Ishimaru
, “
Application of the composite roughness model to high-frequency bottom scattering
,”
J. Acoust. Soc. Am.
79
,
1410
1422
(
1986
).
3.
A. N.
Ivakin
, “
A unified approach to volume and roughness scattering
,”
J. Acoust. Soc. Am.
103
,
827
837
(
1998
).
4.
D.
Tang
, “
Acoustic wave scattering from a random ocean bottom
,” Ph.D. thesis,
Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
, Massachusetts (
1991
).
5.
P. D.
Mourad
and
D. R.
Jackson
, “
A model/data comparison for low-frequency bottom backscatter
,”
J. Acoust. Soc. Am.
94
,
344
358
(
1993
).
6.
A. P.
Lyons
, “
The potential impact of shell fragment distributions on high-frequency seafloor backscatter
,”
J. Oceanic Eng.
30
,
843
851
(
2005
).
7.
D.
Chu
,
K. L.
Williams
,
D.
Tang
, and
D. R.
Jackson
, “
High-frequency bistatic scattering by sub-bottom gas bubbles
,”
J. Acoust. Soc. Am.
102
,
806
814
(
1997
).
8.
A. N.
Ivakin
and
D. R.
Jackson
, “
Effects of shear elasticity on sea bed scattering: Numerical examples
,”
J. Acoust. Soc. Am.
103
,
346
354
(
1998
).
9.
A. A.
Kokhanovsky
,
Optics of Light Scattering Media
, 2nd ed. (
Springer–Praxis
,
U.K.
,
2001
).
10.
L.
Margerin
,
M.
Campillo
, and
B.
van Tiggelen
, “
Radiative transfer and diffusion of waves in a layered medium: New insight into coda Q
,”
Geophys. J. Int.
134
,
596
612
(
1998
).
11.
J. A.
Turner
and
R. L.
Weaver
, “
Radiative transfer of ultrasound
,”
J. Acoust. Soc. Am.
96
,
3654
3672
(
1994
).
12.
J. E.
Quijano
and
L. M.
Zurk
, “
Application of radiative transfer theory to acoustic propagation in the ocean bottom
,” in
Proceedings of the Oceans ’07
,
Vancouver, BC, Canada
(
2007
), pp.
1
7
.
13.
A.
Ishimaru
,
Wave Propagation and Scattering in Random Media
, 1st ed. (
Academic
,
New York
,
1978
), Vol.
1
.
14.
M. I.
Mishchenko
and
L. D.
Travis
,
Multiple Scattering of Light by Particles
, 1st ed. (
Cambridge University Press
,
Cambridge
,
2006
).
15.
L.
Tsang
and
A.
Ishimaru
, “
Radiative wave and cyclical transfer equations for dense non tenuous media
,”
J. Opt. Soc. Am.
2
,
2187
2194
(
1985
).
16.
B.
Wen
,
L.
Tsang
,
D. P.
Winebrenner
, and
A.
Ishimaru
, “
Dense medium radiative transfer theory: Comparison with experiment and application to microwave remote sensing and polarimetry
,”
IEEE Trans. Geosci. Remote Sens.
28
,
46
59
(
1990
).
17.
L. M.
Zurk
,
L.
Tsang
, and
D. P.
Winebrenner
, “
Scattering properties of dense media from Monte Carlo simulations with application to active remote sensing of snow
,”
Radio Sci.
31
,
803
819
(
1996
).
18.
G.
Bal
, “
Radiative transfer equations with varying refractive index: A mathematical perspective
,”
J. Opt. Soc. Am.
23
,
1639
1644
(
2006
).
19.
K. N.
Liou
,
Introduction to Atmospheric Radiation
, 2nd ed. (
Academic
,
San Diego, CA
,
2002
).
20.
G. A.
Titov
, “
Radiative horizontal transport and absorption in stratocumulus clouds
,”
J. Atmos. Sci.
55
,
2549
2560
(
1998
).
21.
T.
Okutucu
,
Y.
Yener
, and
A. A.
Busnaina
, “
Transient radiative transfer in participating media with pulse-laser irradiation: An approximate Galerkin solution
,”
J. Quant. Spectrosc. Radiat. Transf.
103
,
118
130
(
2007
).
22.
J. A.
Turner
and
R. L.
Weaver
, “
Time dependence of multiply scattered diffuse ultrasound in polycrystalline media
,”
J. Acoust. Soc. Am.
97
,
2639
2644
(
1995
).
23.
S.
Chandrasekhar
,
Radiative Transfer
, 1st ed. (
Dover
,
New York
,
1960
).
24.
R. T.
Shin
and
J. A.
Kong
, “
Radiative transfer theory for active remote sensing of a homogeneous layer containing spherical scatterers
,”
J. Appl. Phys.
52
,
4221
4230
(
1981
).
25.
L.
Tsang
,
J. A.
Kong
, and
R. T.
Shin
,
Theory of Microwave Remote Sensing
, 1st ed. (
Wiley-Interscience
,
New York
,
1985
).
26.
L. M.
Brekhovskikh
,
Waves in Layered Media
, 2nd ed. (
Academic
,
Orlando, FL
,
1980
).
27.
J. A.
Turner
and
R. L.
Weaver
, “
Ultrasonic radiative transfer in polycrystalline media: Effects of a fluid-solid interface
,”
J. Acoust. Soc. Am.
98
,
2801
2808
(
1995
).
28.
D. R.
Jackson
,
K. B.
Briggs
,
K. L.
Williams
, and
M. D.
Richardson
, “
Tests of models for high-frequency seafloor
,”
J. Oceanic Eng.
21
,
458
470
(
1996
).
29.
M. J.
Buckingham
, “
Wave propagation, stress relaxation, and grain-to-grain shearing in saturated, unconsolidated marine sediments
,”
J. Acoust. Soc. Am.
108
,
2796
2815
(
2000
).
30.
E. L.
Hamilton
, “
Geoacoustic modeling of the sea floor
,”
J. Acoust. Soc. Am.
68
,
1313
1339
(
1980
).
31.
E. L.
Hamilton
, “
VpVs and Poisson’s ratios in marine sediments and rocks
,”
J. Acoust. Soc. Am.
66
,
1093
1101
(
1979
).
32.
C.
Wu
, “
Propagation of scattered radiation in a participating planar medium with pulse irradiation
,”
J. Quant. Spectrosc. Radiat. Transf.
64
,
537
548
(
2000
).
You do not currently have access to this content.