This article examines the theoretical limitations of the local inversion techniques for the measurement of the tissue elasticity. Most of these techniques are based on the estimation of the phase speed or the algebraic inversion of a one-dimensional wave equation. To analyze these techniques, the wave equation in an elastic continuum is revisited. It is proven that in an infinite medium, harmonic shear waves can travel at any phase speed greater than the classically known shear wave speed, μρ, by demonstrating this for a special case with cylindrical symmetry. Hence in addition to the mechanical properties of the tissue, the phase speed depends on the geometry of the wave as well. The elastic waves in an infinite cylindrical rod are studied. It is proven that multiple phase speeds can coexist for a harmonic wave at a single frequency. This shows that the phase speed depends not only on the mechanical properties of the tissue but also on its shape. The final conclusion is that the only way to avoid theoretical artifacts in the elastograms obtained by the local inversion techniques is to use the shear wave equation as expressed in the curl of the displacements, i.e., the rotations, for the inversion.

1.
J.
Ophir
,
I.
Cespedes
,
H.
Ponnekanti
,
Y.
Yazdi
, and
X.
Li
, “
Elastography: A quantitative method for imaging of elasticity of biological tissues
,”
Ultrason. Imaging
13
,
111
134
(
1991
).
2.
K.
Parker
,
L.
Gao
,
R.
Lerner
, and
S.
Levinson
, “
Techniques for elastic imaging: A review
,”
IEEE Eng. Med. Biol. Mag.
15
,
52
59
(
1996
).
3.
L.
Gao
,
K. J.
Parker
,
R. M.
Lerner
, and
S.
Levinson
, “
Imaging of the elastic properties of tissue—A review
,”
Ultrasound Med. Biol.
22
,
959
977
(
1996
).
4.
J.
Ophir
,
B.
Garra
,
F.
Kallel
,
E.
Konofagou
,
T.
Krouskop
,
R.
Righetti
, and
T.
Varghese
, “
Elastographic imaging
,”
Ultrasound Med. Biol.
26
,
S23
S29
(
2000
).
5.
A.
Sarvazyan
,
Handbook of Elastic Properties of Solids, Liquids and Gases
(
Academic
,
New York
,
2001
), Vol.
III
.
6.
J.
Ophir
,
S. K.
Alam
,
B.
Garra
,
F.
Kallel
,
E.
Konofagou
,
T.
Krouskop
,
C.
Merritt
,
R.
Righetti
,
R.
Souchon
,
S.
Srinivasan
, and
T.
Varghese
, “
Elastography: Imaging the elastic properties of soft tissues with ultrasound
,”
J. Med. Ultrason.
29
,
155
171
(
2002
).
7.
J. F.
Greenleaf
,
M.
Fatemi
, and
M.
Insana
, “
Selected methods for imaging elastic properties of biological tissues
,”
Annu. Rev. Biomed. Eng.
5
,
57
78
(
2003
).
8.
K. J.
Parker
,
L. S.
Taylor
,
S.
Gracewski
, and
D. J.
Rubens
, “
A unified view of imaging the elastic properties of tissue
,”
J. Acoust. Soc. Am.
117
,
2705
2712
(
2005
).
9.
T.
Varghese
,
J.
Ophir
, and
T.
Krouskop
, “
Nonlinear stress-strain relationships in tissue and their effect on the contrast-to-noise ratio in elastograms
,”
Ultrasound Med. Biol.
26
,
839
851
(
2000
).
10.
E. E.
Konofagou
,
T. P.
Harrigan
,
J.
Ophir
, and
T. A.
Krouskop
, “
Poroelastography: Imaging the poroelastic properties of tissues
,”
Ultrasound Med. Biol.
27
,
1387
1397
(
2001
).
11.
S.
Chen
,
M.
Fatemi
, and
J. F.
Greenleaf
, “
Quantifying elasticity and viscosity from measurement of shear wave speed dispersion
,”
J. Acoust. Soc. Am.
115
,
2781
2785
(
2004
).
12.
J.
Bercoff
,
M.
Tanter
,
M.
Muller
, and
M.
FinkJ
, “
The role of viscosity in the impulse diffraction field of elastic waves induced by the acoustic radiation force
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
51
,
1523
1536
(
2004
).
13.
R.
Righetti
,
J.
Ophir
,
S.
Srinivasan
, and
T. A.
Krouskop
, “
The feasibility of using elastography for imaging the Poisson’s ratio in porous media
,”
Ultrasound Med. Biol.
30
,
215
228
(
2004
).
14.
R.
Sinkus
,
M.
Tanter
,
T.
Xydeas
,
S.
Catheline
,
J.
Bercoff
, and
M.
Fink
, “
Viscoelastic shear properties of in vivo breast lesions measured by mr elastography
,”
Magn. Reson. Imaging
23
,
159
165
(
2005
).
15.
R.
Righetti
,
J.
Ophir
, and
T. A.
Krouskop
, “
A method for generating permeability elastograms and Poisson’s ratio time-constant elastograms
,”
Ultrasound Med. Biol.
31
,
803
816
(
2005
).
16.
S.
Chen
,
R.
Kinnick
,
J. F.
Greenleaf
, and
M.
Fatemi
, “
Difference frequency and its harmonic emitted by microbubbles under dual frequency excitation
,”
Ultrasonics
44
,
123
126
(
2006
).
17.
R.
Sinkus
,
J.
Bercoff
,
M.
Tanter
,
J.-L.
Gennisson
,
C. E.
Khoury
,
V.
Servois
,
A.
Tardivon
, and
M.
Fink
, “
Nonlinear viscoelastic properties of tissue assessed by ultrasound
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
53
,
2009
2018
(
2006
).
18.
S.
Chen
,
R. R.
Kinnick
,
J. F.
Greenleaf
, and
M.
Fatemi
, “
Harmonic vibro-acoustography
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
54
,
1346
1351
(
2007
).
19.
X.
Jacob
,
S.
Catheline
,
J.-L.
Gennisson
,
C.
Barriére
,
D.
Royer
, and
M.
Fink
, “
Nonlinear shear wave interaction in soft solids
,”
J. Acoust. Soc. Am.
122
,
1917
1926
(
2007
).
20.
A.
Thitaikumar
,
T. A.
Krouskop
,
B. S.
Garra
, and
J.
Ophir
, “
Visualization of bonding at an inclusion boundary using axial-shear strain elastography: A feasibility study
,”
Phys. Med. Biol.
52
,
2615
2633
(
2007
).
21.
J.
Gennisson
,
M.
Rénier
,
S.
Catheline
,
C.
Barriére
,
J.
Bercoff
,
M.
Tanter
, and
M.
Fink
, “
Acoustoelasticity in soft solids: Assessment of the nonlinear shear modulus with the acoustic radiation force
,”
J. Acoust. Soc. Am.
122
,
3211
3219
(
2007
).
22.
A.
Thitaikumar
,
L. M.
Mobbs
,
C. M.
Kraemer-Chant
,
B. S.
Garra
, and
J.
Ophir
, “
Breast tumor classification using axial shear strain elastography: A feasibility study
,”
Phys. Med. Biol.
53
,
4809
4823
(
2008
).
23.
R.
Lerner
and
K.
Parker
, “
Sonoelasticity images, ultrasonic tissue characterization and echographic imaging
,” in
Proceedings of the Seventh European Communities Workshop
,
Nijmegen
,
The Netherlands
(
1987
).
24.
R.
Lerner
,
K.
Parker
,
J.
Holen
,
R.
Gramiak
, and
R.
Waag
, “
Sono-elasticity: Medical elasticity images derived from ultrasound signals in mechanically vibrated targets
,”
Acoust. Imaging
16
,
317
327
(
1988
).
25.
R.
Sinkus
,
J.
Lorenzen
,
D. S.
amd
,
M.
Lorenzen
,
M.
Dargatz
, and
D.
Holz
, “
High-resolution tensor mr elastography for breast tumor detection
,”
Phys. Med. Biol.
45
,
1649
1664
(
2000
).
26.
R.
Souchon
,
L.
Soualmi
,
M.
Bertrand
,
J.-Y.
Chapelon
,
F.
Kallel
, and
J.
Ophir
, “
Ultrasonic elastography using sector scan imaging and a radial compression
,”
Ultrasonics
40
,
867
871
(
2002
).
27.
L.
Sandrin
,
M.
Tanter
,
S.
Catheline
, and
M.
Fink
, “
Shear modulus imaging with 2-d transient elastography
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
49
,
426
435
(
2002
).
28.
L.
Sandrin
,
M.
Tanter
,
J.-L.
Gennisson
,
S.
Catheline
, and
M.
Fink
, “
Shear elasticity probe for soft tissues with 1-d transient elastography
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
49
,
436
446
(
2002
).
29.
J.-L.
Gennisson
,
S.
Catheline
,
S.
Chaffaï
, and
M.
Fink
, “
Transient elastography in anisotropic medium: Application to the measurement of slow and fast shear wave speeds in muscles
,”
J. Acoust. Soc. Am.
114
,
536
541
(
2003
).
30.
J.
Bercoff
,
R.
Sinkus
,
M.
Tanter
, and
M.
Fink
, “
Supersonic shear imaging: A new technique for soft tissue elasticity mapping
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
51
,
396
409
(
2004
).
31.
M. W.
Urban
and
J. F.
Greenleaf
, “
Harmonic pulsed excitation and motion detection of a vibrating reflective target
,”
J. Acoust. Soc. Am.
123
,
519
533
(
2008
).
32.
F.
Yeung
,
S. F.
Levinson
,
D.
Fu
, and
K. J.
Parker
, “
Feature-adaptive motion tracking of ultrasound image sequences using a deformable mesh
,”
IEEE Trans. Med. Imaging
17
,
945
956
(
1998
).
33.
E.
Konofagou
,
T.
Varghese
,
J.
Ophir
, and
S.
Alam
, “
Power spectral strain estimators in elastography
,”
Ultrasound Med. Biol.
25
,
1115
1129
(
1999
).
34.
E. E.
Konofagou
and
J.
Ophir
, “
Precision estimation and imaging of normal and shear components of the 3d strain tensor in elastography
,”
Phys. Med. Biol.
45
,
1553
1563
(
2000
).
35.
T.
Varghese
,
E.
Konofagou
,
J.
Ophir
,
S.
Alam
, and
M.
Bilgen
, “
Direct strain estimation in elastography using spectral cross-correlation
,”
Ultrasound Med. Biol.
26
,
1525
1537
(
2000
).
36.
M.
Fink
,
L.
Sandrin
,
M.
Tanter
,
S.
Catheline
,
S.
Chaffai
,
J.
Bercoff
, and
J.
Gennisson
, “
Ultra high speed imaging of elasticity
,”
Proc.-IEEE Ultrason. Symp.
2
,
1811
1820
(
2002
).
37.
J.
Bercoff
,
R.
Sinkus
,
M.
Tanter
, and
M.
FinkJ
, “
3d ultrasound-based dynamic and transient elastography: First in vitro results
,”
Proc.-IEEE Ultrason. Symp.
1
,
28
31
(
2004
).
38.
K.
Hoyt
,
F.
Forsberg
, and
J.
Ophir
, “
Investigation of parametric spectral estimation techniques for elasticity imaging
,”
Ultrasound Med. Biol.
31
,
1109
1121
(
2005
).
39.
K.
Hoyt
,
F.
Forsberg
, and
J.
Ophir
, “
Comparison of shift estimation strategies in spectral elastography
,”
Ultrasonics
44
,
99
108
(
2006
).
40.
K.
Hoyt
,
F.
Forsberg
, and
J.
Ophir
, “
Analysis of a hybrid spectral strain estimation technique in elastography
,”
Phys. Med. Biol.
51
,
197
209
(
2006
).
41.
J.-L.
Gennisson
,
T.
Deffieux
,
R.
Sinkus
,
P.
Annic
,
M.
Pernot
,
F.
Cudeiro
,
G.
Montaldo
,
M.
Tanter
,
M.
Fink
, and
J.
Bercoff
, “
A 3d elastography system based on the concept of ultrasound-computed tomography for in vivo breast examination
,”
Proc.-IEEE Ultrason. Symp.
1
,
1037
1040
(
2006
).
42.
A. J.
Romano
,
J. J.
Shirron
, and
J. A.
Bucaro
, “
On the noninvasive determination of material parameters from a knowledge of elastic displacements: Theory and numerical simulation
,”
IEEE Trans. Electromagn. Compat.
45
,
751
759
(
1998
).
43.
C.
Sumi
,
A.
Suzuki
, and
K.
Nakayama
, “
Estimation of shear modulus distribution in soft tissue from strain distribution
,”
IEEE Trans. Biomed. Eng.
42
,
193
202
(
1995
).
44.
K.
Raghavan
and
A. E.
Yagle
, “
Forward and inverse problems in elasticity imaging of soft tissues
,”
IEEE Trans. Nucl. Sci.
41
,
1639
1648
(
1994
).
45.
F.
Kallel
and
M.
Bertrand
, “
Tissue elasticity reconstruction using linear perturbation method
,”
IEEE Trans. Med. Imaging
15
,
299
313
(
1996
).
46.
M.
Doyley
,
P.
Meaney
, and
J.
Bamber
, “
Evaluation of an iterative reconstruction method for quantitative elastography
,”
Phys. Med. Biol.
45
,
1521
1540
(
2000
).
47.
P. E.
Barbone
and
J. C.
Bamber
, “
Quantitative elasticity imaging: What can and cannot be inferred from strain images
,”
Phys. Med. Biol.
47
,
2147
2164
(
2002
).
48.
A. A.
Oberai
,
N. H.
Gokhale
, and
G. R.
Feijóo
, “
Solution of inverse problems in elasticity imaging using the adjoint method
,”
Inverse Probl.
19
,
297
313
(
2003
).
49.
D.
Fu
,
S.
Levinson
,
S.
Gracewski
, and
K.
Parker
, “
Non-invasive quantitative reconstruction of tissue elasticity using an iterative forward approach
,”
Phys. Med. Biol.
45
,
1495
1509
(
2000
).
50.
A.
Manduca
,
T.
Oliphant
,
M.
Dresner
,
J.
Mahowald
,
S.
Kruse
,
E.
Amromin
,
J.
Felmlee
,
J.
Greenleaf
, and
R.
Ehman
, “
Magnetic resonance elastography: Non-invasive mapping of tissue elasticity
,”
Med. Image Anal.
5
,
237
2540
(
2001
).
51.
T.
Oliphant
,
A.
Manduca
,
R.
Ehman
, and
J.
Greenleaf
, “
Complex-valued stiffness reconstruction by for magnetic resonance elastography by algebraic inversion of the differential equation
,”
Magn. Reson. Med.
45
,
299
310
(
2001
).
52.
S.
Catheline
,
J.
Gennisson
,
G.
Delon
,
M.
Fink
,
R.
Sinkus
,
S.
Abouelkaram
, and
J.
Culiolic
, “
Measurement of viscoelastic properties of homogeneous soft solid using transient elastography: An inverse problem approach
,”
J. Acoust. Soc. Am.
116
,
3734
3741
(
2004
).
53.
B.
Robert
,
R.
Sinkus
,
B.
Larrat
,
M.
Tanter
, and
M.
Fink
, “
A new rheological model based on fractional derivatives for biological tissues
,”
Proc.-IEEE Ultrason. Symp.
1
,
1033
1036
(
2006
).
54.
X.
Zhang
and
J. F.
Greenleaf
, “
Estimation of tissues elasticity with surface wave speed (l)
,”
J. Acoust. Soc. Am.
122
,
2522
2525
(
2007
).
55.
A. A.
Oberai
,
N. H.
Gokhale
,
M. M.
Doyley
, and
J. C.
Bamber
, “
Evaluation of the adjoint equation based algorithm for elasticity imaging
,”
Phys. Med. Biol.
49
,
2955
2974
(
2004
).
56.
M. M.
Doyley
,
S.
Srinivasan
,
S. A.
Pendergrass
,
Z.
Wu
, and
J.
Ophir
, “
Comparative evaluation of strain-based and model-based modulus elastography
,”
Ultrasound Med. Biol.
31
,
787
802
(
2005
).
57.
M. M.
Doyley
,
S.
Srinivasan
,
E.
Dimidenko
,
N.
Soni
, and
J.
Ophir
, “
Enhancing the performance of model-based elastography by incorporating additional a priori information in the modulus image reconstruction process
,”
Phys. Med. Biol.
51
,
95
112
(
2006
).
58.
J.
Bercoff
,
S.
Chaffai
,
M.
Tanter
,
L.
Sandrin
,
S.
Catheline
,
M.
Fink
,
J. L.
Gennisson
, and
M.
Meunier
, “
In vivo breast tumor detection using transient elastography
,”
Magn. Reson. Med.
29
,
1387
1396
(
2003
).
59.
J.
Bercoff
,
M.
Muller
,
M.
Tanter
, and
M.
Fink
, “
Study of viscous and elastic properties of soft tissue using supersonic shear imaging
,”
Proc.-IEEE Ultrason. Symp.
1
,
925
928
(
2003
).
60.
J.
Fromageau
,
J.-L.
Gennisson
,
C.
Schmitt
,
R. L.
Maurice
,
R.
Mongrain
, and
G.
Cloutier
, “
Estimation of polyvinyl alcohol cryogel mechanical properties with four ultrasound elastography methods and comparison with gold standard testing
,”
IEEE Trans. Electromagn. Compat.
54
,
498
509
(
2007
).
61.
A.
Romano
,
J.
Bucaro
,
P.
Abraham
, and
S.
Dey
, “
Inversion methods for the detection and localization of inclusions in structures utilizing dynamic surface displacements
,”
Proc. SPIE
5503
,
367
374
(
2004
).
62.
H.
Kolsky
,
Stress Waves in Solids
(
Dover
,
New York
,
1963
).
63.
S.
Catheline
,
F.
Wu
, and
M.
Fink
, “
A solution to diffraction biases in sonoelasticity: The acoustic impulse technique
,”
J. Acoust. Soc. Am.
105
,
2941
2950
(
1999
).
64.
A.
Baghani
,
H.
Eskandari
,
T.
Salcudean
, and
R.
Rohling
, “
Measurement of tissue elasticity using longitudinal waves
,” in
Proceedings of the Seventh International Conference on the Ultrasonic Measurement and Imaging of Tissue Elasticity
(
2008
), p.
103
.
65.
F. A.
Duck
,
Physical Properties of Tissue: A Comprehensive Reference Book
(
Academic
,
New York
,
1990
).
66.
M. M.
Burlew
,
E. L.
Madsen
,
J. A.
Zagzebski
,
R. A.
Bahjavic
, and
S. W.
Sum
, “
A new ultrasound tissue-equivalent material
,”
Radiology
134
,
517
520
(
1980
).
67.
S. A.
Goss
,
R. L.
Johnston
, and
F.
Dunn
, “
Comprehensive compilation of empirical ultrasonic properties of mammalian tissues
,”
J. Acoust. Soc. Am.
64
,
423
457
(
1978
).
68.
A.
Sarvazyan
,
O.
Rudenko
,
S.
Swanson
,
J.
Fowlkes
, and
S.
Emelianov
, “
Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics
,”
Ultrasound Med. Biol.
24
,
1419
1435
(
1998
).
69.
M.
Walz
,
J.
Teubner
, and
M.
Georgi
, “
Elasticity of benign and malignant breast lesions
,” in
Imaging, Application and Results in Clinical and General Practice
,
Eighth International Congress on the Ultrasonic Examination of the Breast
(
1993
), p.
56
.
70.
W.-C.
Yeh
,
P.-C.
Li
,
Y.-M. J.
amd
,
Hey-Chi
Hsu
,
P.-L.
Kuo
,
M.-L.
Li
,
P.-M.
Yang
, and
P. H.
Lee
, “
Elastic modulus measurements of human liver and correlation with pathology
,”
Ultrasound Med. Biol.
28
,
467
474
(
2002
).
71.
T.
Krouskop
,
T.
Wheeler
,
F.
Kallel
,
B.
Garra
, and
T.
Hall
, “
Elastic moduli of breast and prostate tissues under compression
,”
Ultrason. Imaging
20
,
260
274
(
1998
).
72.
M.
Muller
,
J.-L.
Gennisson
,
T.
Deffieux
,
R.
Sinkus
,
P.
Annic
,
G.
Montaldo
,
M.
Tanter
, and
M.
Fink
, “
Full 3d inversion of the viscoelasticity wave propagation problem for 3d ultrasound elastography in breast cancer diagnosis
,”
Proc.-IEEE Ultrason. Symp.
1
,
672
675
(
2007
).
73.
L.
Huwart
,
F.
Peeters
,
R.
Sinkus
,
L.
Annet
,
N.
Salameh
,
L. C.
ter Beek
,
Y.
Horsmans
, and
B. E. V.
Beers
, “
Liver fibrosis: Non-invasive assessment with mr elastography
,”
NMR Biomed.
19
,
173
179
(
2006
).
74.
R.
Sinkus
,
M.
Tanter
,
S.
Catheline
,
J.
Lorenzen
,
C.
Kuhl
,
E.
Sondermann
, and
M.
Fink
, “
Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography
,”
Magn. Reson. Med.
53
,
372
387
(
2005
).
75.
R.
Sinkus
,
K.
Siegmann
,
T.
Xydeas
,
M.
Tanter
,
C.
Claussen
, and
M.
Fink
, “
MR elastography of breast lesions: Understanding the solid/liquid duality can improve the specificity of contrast-enhanced mr mammography
,”
Magn. Reson. Med.
58
,
1135
1144
(
2007
).
76.
R.
Baierlein
, “
Representing a vector field: Helmholtz’s theorem derived from a Fourier identity
,”
Am. J. Phys.
63
,
180
182
(
1995
).
77.
F.
Rohrlich
, “
Causality, the Coulomb field, and Newton’s law of gravitation
,”
Am. J. Phys.
70
,
411
414
(
2002
).
78.
K. F.
Graff
,
Wave Motion in Elastic Solids
(
Oxford University Press
,
New York
/
Ely House
,
London
,
1975
).
79.
L.
Sandrin
,
D.
Cassereau
, and
M.
Fink
, “
The role of the coupling term in transient elastography
,”
J. Acoust. Soc. Am.
115
,
73
83
(
2004
).
You do not currently have access to this content.