A ray-based method is presented for evaluating multiple acoustic diffraction by separate rigid and parallel wide barriers, where two or more neighboring ones are of equal height. Based on the geometrical theory of diffraction and extended from the exact boundary solution for a rigid wedge, the proposed method is able to determine the multiple diffraction along arbitrary directions or at arbitrary receiver locations around the diffracting edges, including the positions along the shadow or reflection boundaries or very close to the edges. Comparisons between the results of the numerical simulations and the boundary element method show validity of the proposed method.

1.
K.
Fujiwara
,
Y.
Ando
, and
Z.
Maekawa
, “
Attenuation of a spherical sound wave diffracted by a thick plate
,”
Acustica
28
,
341
347
(
1973
).
2.
U. J.
Kurze
and
G. S.
Anderson
, “
Sound attenuation by barriers
,”
Appl. Acoust.
4
,
35
53
(
1971
).
3.
D. A.
Bies
and
C. H.
Hansen
,
Engineering Noise Control: Theory and Practice
, 2nd ed. (
E & FN SPON
,
London
,
1996
).
4.
RAYNOISE user’s manual, version 3.1 LMS, Numerical Technologies (
2002
).
5.
A. D.
Pierce
, “
Diffraction of sound around corners and over wide barriers
,”
J. Acoust. Soc. Am.
55
,
941
955
(
1974
).
6.
J. B.
Keller
, “
Diffraction by an aperture
,”
J. Appl. Phys.
28
,
426
444
(
1957
).
7.
J. B.
Keller
, “
Diffraction by an aperture. II
,”
J. Appl. Phys.
28
,
570
579
(
1957
).
8.
J. B.
Keller
, “
Geometrical theory of diffraction
,”
J. Opt. Soc. Am.
52
,
116
130
(
1962
).
9.
W. J.
Hadden
and
A. D.
Pierce
, “
Sound diffraction around screens and wedges for arbitrary point source location
,”
J. Acoust. Soc. Am.
69
,
1266
1276
(
1981
).
10.
D.
Chu
,
T. K.
Stanton
, and
A. D.
Pierce
, “
Higher-order acoustic diffraction by edges of finite thickness
,”
J. Acoust. Soc. Am.
122
,
3177
3193
(
2007
).
11.
T.
Kawai
, “
Sound diffraction by a many-sided barrier or pillar
,”
J. Sound Vib.
79
,
229
242
(
1981
).
12.
H. S.
Kim
,
J. S.
Kim
,
H. J.
Kang
,
B. K.
Kim
, and
S. R.
Kim
, “
Sound diffraction by multiple wedges and thin screens
,”
Appl. Acoust.
66
,
1102
1119
(
2005
).
13.
R. G.
Kouyoumjian
and
P. H.
Pathak
, “
A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface
,”
Proc. IEEE
62
,
1448
1461
(
1974
).
14.
E. M.
Salomons
, “
Sound propagation in complex outdoor situations with a non-reflecting atmosphere: Model based on analytical solutions for diffraction and reflection
,”
Acust. Acta Acust.
83
,
436
454
(
1997
).
15.
G. J.
Wadsworth
and
J. P.
Chambers
, “
Scale model experiments on the insertion loss of wide and double barriers
,”
J. Acoust. Soc. Am.
107
,
2344
2350
(
2000
).
16.
H.
Medwin
,
E.
Childs
, and
G. M.
Jebsen
, “
Impulse studies of double diffraction: A discrete Huygens interpretation
,”
J. Acoust. Soc. Am.
72
,
1005
1013
(
1982
).
17.
E.
Reboul
,
A. L.
Bot
, and
J. P.
Liaudet
, “
Radiative transfer equation for multiple diffraction
,”
J. Acoust. Soc. Am.
118
,
1326
1334
(
2005
).
18.
H.
Bougdah
,
I.
Ekici
, and
J.
Kang
, “
A laboratory investigation of noise reduction by riblike structures on the ground
,”
J. Acoust. Soc. Am.
120
,
3714
3722
(
2006
).
19.
D.
Duhamel
, “
Efficient calculation of the three-dimensional sound pressure field around a noise barrier
,”
J. Sound Vib.
197
,
547
571
(
1996
).
You do not currently have access to this content.