Acoustic and seismic waves provide a method to localize compliant mines by vibrating the top plate and a thin soil layer above the mine. This vibration is mostly linear, but also includes a small nonlinear deviation. The main goal of this paper is to introduce a method of processing that uses phase-inversion to observe nonlinear effects in a wide frequency band. The method extracts a nonlinear part of surface velocity from two similar broadcast signals of opposite sign by summing and canceling the linear components and leaving the nonlinear components. This phase-inversion method is combined with time reversal focusing to provide increased seismic vibration and enhance the nonlinear effect. The experiments used six loudspeakers in a wood box placed over sand in which inert landmines were buried. The nonlinear surface velocity of the sand with a mine compared to the sand without a mine was greater as compared to a linear technique.

1.
N.
Xiang
and
J. M.
Sabatier
, “
An experimental study on antipersonnel landmine detection using acoustic-to-seismic coupling
,”
J. Acoust. Soc. Am.
113
,
1333
1341
(
2003
).
2.
J. M.
Sabatier
, “
Land mine detection measurements using acoustic-to-seismic coupling
,”
Proc. SPIE
4038
,
645
655
(
2000
).
3.
V.
Valeau
,
J.
Sabatier
,
R. D.
Costley
, and
N.
Xiang
, “
Development of a time-frequency representation for acoustic detection of buried objects
,”
J. Acoust. Soc. Am.
116
,
2984
2995
(
2004
).
4.
V.
Aranchuk
,
J. M.
Sabatier
,
A. K.
Lal
,
C. F.
Hess
,
R. D.
Burgett
, and
M.
O’Neill
, “
Multi-beam laser Doppler vibrometry for acoustic landmine detection using airborne and mechanically-coupled vibration
,”
Proc. SPIE
5794
,
624
631
(
2005
).
5.
A.
Behboodian
,
W. R.
Scott
, Jr.
, and
J. H.
McClellan
, “
Signal processing of elastic surface waves for localizing buried land mines
,”
Proceedings of the 33rd Assilomar Conference on Signal, Systems, and Computers
,
Assilomar, CA
, October,
1999
.
6.
W. R.
Scott
, Jr.
,
G. D.
Larson
,
J. S.
Martin
, and
G. S.
McCall
 II
, “
Field testing and development of a seismic landmine detection system
,”
Proc. SPIE
5089
,
643
652
(
2003
).
7.
T. G.
Muir
,
M. E.
Zakharia
,
A.
Gril
, and
E. G.
de Garambe
, “
Landmine detection with seismic sonar
,”
Proc. SPIE
5415
,
145
155
(
2004
).
8.
A. V.
Nikolaev
, “
Problems of nonlinear seismology
,”
Phys. Earth Planet. Inter.
50
,
1
7
(
1988
).
9.
O. V.
Pavlenko
, “
Nonlinear seismic effects in soils: Numerical simulation and study
,”
Bull. Seismol. Soc. Am.
91
,
381
396
(
2001
).
10.
V.
Tournat
,
V. Yu.
Zaitsev
,
V. E.
Nazarov
,
V. É.
Gusev
, and
B.
Castagnéde
, “
Experimental study of nonlinear acoustic effects in a granular medium
,”
Acoust. Phys.
51
,
543
553
(
2005
).
11.
P. A.
Johnson
and
X.
Jia
, “
Nonlinear dynamics, granular media and dynamic earthquake triggering
,”
Nature (London)
473
,
871
874
(
2005
).
12.
D. M.
Donskoy
,
A.
Ekimov
,
N.
Sedunov
, and
M.
Tsionskiy
, “
Nonlinear seismo-acoustic land mine detection and discrimination
,”
J. Acoust. Soc. Am.
111
,
2705
2714
(
2002
).
13.
D. M.
Donskoy
and
A. M.
Sutin
, “
Method and apparatus for acoustic detection of mines and other buried man-made objects
,” U.S. Patent No. 5,974,881 (2 November
1999
).
14.
J. M.
Sabatier
,
M. S.
Korman
, and
N.
Xiang
, “
Linear and nonlinear acoustic velocity profiles over buried land mines
,”
Proc. SPIE
4742
,
695
700
(
2002
).
15.
D. M.
Donskoy
,
A.
Reznik
,
A.
Zagrai
, and
A.
Ekimov
, “
Nonlinear vibrations of buried landmines
,”
J. Acoust. Soc. Am.
117
,
690
700
(
2005
).
16.
K.
Attenborough
,
Q.
Qin
,
J.
Jefferis
, and
G.
Heald
, “
Accelerometer measurements of acoustic-to-seismic coupling above buried objects
,”
J. Acoust. Soc. Am.
122
,
3230
3241
(
2007
).
17.
M. S.
Korman
and
J. M.
Sabatier
, “
Nonlinear acoustic techniques for landmine detection
,”
J. Acoust. Soc. Am.
116
,
3354
3369
(
2004
).
18.
W. C. K.
Alberts
 II
,
J. M.
Sabatier
, and
R.
Waxler
, “
Resonance frequency shift saturation in land mine burial simulation experiments
,”
J. Acoust. Soc. Am.
120
,
1881
1886
(
2006
).
19.
P. D.
Norville
and
W. R.
Scott
, Jr.
, “
Time-reversal focusing of elastic surface waves
,”
J. Acoust. Soc. Am.
118
,
735
744
(
2005
).
20.
P. D.
Norville
and
W. R.
Scott
, Jr.
, “
Time-reversal focusing of elastic waves in inhomogeneous media: An application to an elastic-wave landmine detection system
,”
Proc. SPIE
5794
,
632
672
(
2005
).
21.
A.
Sutin
,
P.
Johnson
,
J.
TenCate
, and
A.
Sarvazyan
, “
Time reversal acousto-seismic method for land mine detection
,”
Proc. SPIE
5794
,
706
716
(
2005
).
22.
A.
Sutin
,
B.
Libbey
,
V.
Kurtenoks
,
D.
Fenneman
, and
A.
Sarvazyan
, “
Nonlinear detection of land mines using wide bandwidth time-reversal techniques
,”
Proc. SPIE
6217
,
398
409
(
2006
).
23.
B.
Libbey
and
D.
Fenneman
, “
Acoustic to seismic ground excitation using time reversal
,”
Proc. SPIE
5794
,
643
654
(
2005
).
24.
P. D.
Norville
and
W. R.
Scott
, Jr.
, “
Time-reversal focusing of elastic surface waves with an asymmetric surface layer
,”
J. Acoust. Soc. Am.
122
,
EL95
EL100
(
2007
).
25.
S.
Krishnan
and
M.
O’Donnell
, “
Transmit aperture processing for nonlinear contrast agent imaging
,”
Ultrason. Imaging
18
,
77
105
(
1996
).
26.
B. B.
Goldberg
, “
Contrast agents
,”
Ultrasound Med. Biol.
26
,
S33
S34
(
2000
).
27.
P. J. A.
Frinking
,
A.
Bouakaz
,
J.
Kirkhorn
,
F. J.
TenCate
, and
N.
de Jong
, “
Ultrasound contrast imaging: Current and new potential methods
,”
Ultrasound Med. Biol.
26
,
965
975
(
2000
).
28.
A.
Bauer
,
P.
Hauff
,
J.
Lazenby
,
P.
Von Behren
,
M.
Zomack
,
M.
Reinhardt
, and
R.
Schlief
, “
Wideband harmonic imaging: A novel contrast ultrasound imaging technique
,”
Eur. Radiol.
9
,
S364
S367
(
1999
).
29.
J. S.
Martin
,
G. D.
Larson
, and
W. R.
Scott
, Jr.
, “
Surface-contacting vibrometers for seismic landmine detection
,”
Proc. SPIE
5794
,
590
600
(
2005
).
You do not currently have access to this content.