This study investigates two-dimensional wave propagation in an elastic half-space with quadratic nonlinearity. The problem is formulated as a hyperbolic system of conservation laws, which is solved numerically using a semi-discrete central scheme. These numerical results are then analyzed in the frequency domain to interpret the nonlinear effects, specifically the excitation of higher-order harmonics. To quantify and compare the nonlinearity of different materials, a new parameter is introduced, which is similar to the acoustic nonlinearity parameter β for one-dimensional longitudinal waves. By using this new parameter, it is found that the nonlinear effects of a material depend on the point of observation in the half-space, both the angle and the distance to the excitation source. Furthermore it is illustrated that the third-order elastic constants have a linear effect on the acoustic nonlinearity of a material.

1.
A.
Kurganov
and
E.
Tadmor
, “
New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations
,”
J. Comput. Phys.
160
,
241
282
(
2000
).
2.
J.
Balbás
and
E.
Tadmor
, CENTPACK, available at http://www.cscamm.umd.edu/centpack/software (Last viewed March,
2008
).
3.
J. H.
Cantrell
, “
Acoustic-radiation stress in solids. I. Theory
,”
Phys. Rev. B
30
,
3214
3220
(
1984
).
4.
M. F.
Hamilton
and
D. T.
Blackstock
,
Nonlinear Acoustics
(
Academic
,
San Diego, CA
,
1998
).
5.
J.
Herrmann
,
J. Y.
Kim
,
L. J.
Jacobs
,
J.
Qu
,
J. W.
Littles
, and
M. F.
Savage
, “
Assessment of material damage in a nickel-base superalloy using nonlinear Rayleigh surface waves
,”
J. Appl. Phys.
99
,
124913
(
2006
).
6.
J. Y.
Kim
,
L. J.
Jacobs
,
J.
Qu
, and
J. W.
Littles
, “
Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves
,”
J. Acoust. Soc. Am.
120
,
1266
1273
(
2006
).
7.
J. H.
Cantrell
and
W. T.
Yost
, “
Nonlinear ultrasonic characterization of fatigue microstructures
,”
Int. J. Fatigue
23
,
487
490
(
2001
).
8.
P. B.
Nagy
, “
Fatigue damage assessment by nonlinear ultrasonic material characterization
,”
Ultrasonics
36
,
375
381
(
1998
).
9.
J.
Frouin
,
S.
Sathish
,
T. E.
Matikas
, and
J. K.
Na
, “
Ultrasonic linear and nonlinear behavior of fatigued Ti-6Al-4V
,”
J. Mater. Res.
14
,
1295
1298
(
1999
).
10.
C.
Pruell
,
J. Y.
Kim
,
J.
Qu
, and
L. J.
Jacobs
, “
Evaluation of plasticity driven material damage using Lamb waves
,”
Appl. Phys. Lett.
91
,
231911
(
2007
).
11.
L. D.
Landau
and
E.
Lifshitz
,
Theory of Elasticity
(
Pergamon
,
London
,
1959
).
12.
F. D.
Murnaghan
,
Finite Deformation of an Elastic Solid
(
Wiley
,
New York
,
1951
).
13.
A. L.
Polyakova
, “
Nonlinear effects in a solid
,”
Sov. Phys. Solid State
6
,
50
54
(
1964
).
14.
R. E.
Green
,
Ultrasonic Investigation of Mechanical Properties
,
Treatise on Materials Science and Technology
Vol.
3
(
Academic
,
New York
,
1973
).
15.
T.
Meurer
,
J.
Qu
, and
L. J.
Jacobs
, “
Wave propagation in nonlinear and hysteretic media—a numerical study
,”
Int. J. Solids Struct.
39
,
5585
5614
(
2002
).
16.
E.
Godlewski
and
P. A.
Raviart
,
Numerical Approximation of Hyperbolic Systems of Conservation Laws
,
Applied Mathematical Sciences
Vol.
118
(
Springer
,
New York
,
1996
).
17.
M. E.
Taylor
,
Partial Differential Equations III—Nonlinear Equations
,
Applied Mathematical Sciences
Vol.
117
(
Springer
,
New York
,
1996
).
18.
G. B.
Whitham
,
Linear and Nonlinear Waves
,
Pure and Applied Mathematics
(
Wiley
,
New York
,
1999
).
19.
R. J.
LeVeque
, “
Wave propagation algorithms for multidimensional hyperbolic systems
,”
J. Comput. Phys.
131
,
327
353
(
1997
).
20.
C. F.
Gerald
and
P. O.
Wheatley
,
Applied Numerical Analysis
(
Addison-Wesley
,
Reading, MA
,
1994
).
21.
R. J.
LeVeque
,
Finite Volume Methods for Hyperbolic Problems
,
Cambridge Texts in Applied Mathematics
(
Cambridge University Press
,
Cambridge
,
2002
).
22.
S.
Vanaverbeke
and
K. V. D.
Abeele
, “
Two-dimensional modeling of wave propagation in materials with hysteretic nonlinearity
,”
J. Acoust. Soc. Am.
122
,
58
72
(
2007
).
23.
J. D.
Achenbach
,
Wave Propagation in Elastic Solids
,
Applied Mathematics and Mechanics
Vol.
16
(
Elsevier Science
,
New York
,
1975
).
24.
M. J.
Forrestal
,
L. E.
Fugelso
,
G. L.
Neidhardt
, and
R. A.
Felder
, “
Response of a half-space to transient loads
,”
Proceedings of the Engineering Mechanics Division Specialty Conference
,
ASCE
,
New York, NY
(
1966
), pp.
719
751
.
25.
J.
Miklowitz
,
The Theory of Elastic Waves and Waveguides
,
Applied Mathematics and Mechanics
Vol.
22
(
Elsevier Science
,
New York
,
1978
).
26.
S.
Küchler
, “
Wave propagation in an elastic half-space with quadratic nonlinearity
,” MS thesis,
Georgia Institute of Technology
, Atlanta, GA,
2007
.
27.
S.
Küchler
,
T.
Meurer
,
J.
Qu
, and
L. J.
Jacobs
, “
On the solution to the Lamb problem in an elastic half-space with quadratic nonlinearity
,”
Review of Progress in Quantitative Nondestructive Evaluation
,
AIP Conf. Proc. No. 975
(
AIP
,
New York
,
2007
), pp.
70
77
.
28.
R. T.
Smith
,
R.
Stern
, and
R. W. B.
Stephens
, “
Third-order elastic moduli of polycrystalline metals from ultrasonic velocity measurements
,”
J. Acoust. Soc. Am.
40
,
1002
1008
(
1966
).
You do not currently have access to this content.