New miniaturization and integration capabilities available from emerging microelectromechanical system (MEMS) technology will allow silicon-based artificial skins involving thousands of elementary actuators to be developed in the near future. SMART structures combining large arrays of elementary motion pixels coated with macroscopic components are thus being studied so that fundamental properties such as shape, stiffness, and even reflectivity of light and sound could be dynamically adjusted. This paper investigates the acoustic impedance capabilities of a set of distributed transducers connected with a suitable controlling strategy. Research in this domain aims at designing integrated active interfaces with a desired acoustical impedance for reaching an appropriate global acoustical behavior. This generic problem is intrinsically connected with the control of multiphysical systems based on partial differential equations (PDEs) and with the notion of multiscaled physics when a dense array of electromechanical systems (or MEMS) is considered. By using specific techniques based on PDE control theory, a simple boundary control equation capable of annihilating the wave reflections has been built. The obtained strategy is also discretized as a low order time-space operator for experimental implementation by using a dense network of interlaced microphones and loudspeakers. The resulting quasicollocated architecture guarantees robustness and stability margins. This paper aims at showing how a well controlled semidistributed active skin can substantially modify the sound transmissibility or reflectivity of the corresponding homogeneous passive interface. In Sec. IV, numerical and experimental results demonstrate the capabilities of such a method for controlling sound propagation in ducts. Finally, in Sec. V, an energy-based comparison with a classical open-loop strategy underlines the system’s efficiency.

1.
N.
Atalla
,
R.
Panneton
,
F. C.
Sgard
, and
X.
Olny
, “
Acoustic absorption of macro-perforated porous materials
,”
J. Sound Vib.
243
,
659
678
(
2001
).
2.
N.
Sellen
,
M.
Cuesta
, and
M. A.
Galland
, “
Passive layer optimization for active absorbers in flow duct applications
,”
Ninth AIAA/CEAS Aeroacoustics Conference
,
2003
, AIAA Paper No. 2003-3186.
3.
R.
Ramakrishnan
and
W. R.
Watson
, “
Design curves for rectangular splitter silencers
,”
Appl. Acoust.
35
,
1
24
(
1992
).
4.
C.
Yilmaz
and
N.
Kikuchi
, “
Analysis and design of passive low-pass filter-type vibration isolators considering stiffness and mass limitations
,”
J. Sound Vib.
293
,
171
195
(
2006
).
5.
H.
Zheng
,
C.
Cai
,
G. S. H.
Pau
, and
G. R.
Liu
, “
Minimizing vibration response of cylindrical shells through layout optimization of passive constrained layer damping treatments
,”
J. Sound Vib.
279
,
739
756
(
2005
).
6.
M. L.
Munjal
, “
Analysis and design of mufflers—An overview of research at the Indian Institute of Science
,”
J. Sound Vib.
211
,
425
433
(
1998
).
7.
J. S.
Vipperman
,
R. A.
Burdisso
, and
C. R.
Fuller
, “
Active control of broadband structural vibration using the LMS adaptive algorithm
,”
J. Sound Vib.
166
,
283
299
(
1993
).
8.
P.
Gardonio
,
E.
Bianchi
, and
S. J.
Elliott
, “
Smart panel with multiple decentralized units for the control of sound transmission. Part I: Theoretical predictions
,”
J. Sound Vib.
274
,
163
192
(
2004
).
9.
P.
Gardonio
,
E.
Bianchi
, and
S. J.
Elliott
, “
Smart panel with multiple decentralized units for the control of sound transmission. Part II: Design of the decentralized control units
,”
J. Sound Vib.
274
,
193
213
(
2004
).
10.
P.
Gardonio
,
E.
Bianchi
, and
S. J.
Elliott
, “
Smart panel with multiple decentralized units for the control of sound transmission. Part III: Control system implementation
,”
J. Sound Vib.
274
,
215
232
(
2004
).
11.
P. A.
Nelson
and
S. J.
Elliott
,
Active Control of Sound
(
Academic
,
London
,
1992
).
12.
T. M.
Kostek
and
M. A.
Franchek
, “
Hybrid noise control in ducts
,”
J. Sound Vib.
237
,
81
100
(
2000
).
13.
A.
Benjeddou
, “
Advances in hybrid active-passive vibration and noise control via piezo-electric and viscoelastic constrained layer treatments
,”
J. Vib. Control
7
,
565
602
(
2001
).
14.
R. L.
Clark
and
C. R.
Fuller
, “
Experiments on active control of structurally radiated sound using multiple piezoceramic actuators
,”
J. Acoust. Soc. Am.
91
,
3313
3320
(
1992
).
15.
A.
Preumont
,
A.
Francois
,
F.
Bossens
, and
A.
Abu-Hanieh
, “
Force feedback versus acceleration feedback in active vibration isolation
,”
J. Sound Vib.
257
,
605
613
(
2002
).
16.
M.
Furstoss
,
D.
Thenail
, and
M. A.
Galland
, “
Surface impedance control for sound absorption: Direct and hybrid passive/active strategies
,”
J. Sound Vib.
203
,
219
236
(
1997
).
17.
B.
Mazeaud
, “
Developing of an intelligent sound coating for a duct in the presence of flow
,” Ph.D. thesis,
Laboratory of Fluid mechanics and Acoustics
, Centrale Lyon,
2005
.
18.
D.
Guicking
and
K.
Karcher
, “
Active impedance control for one-dimensional sound
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
106
,
393
396
(
1984
).
19.
D.
Guicking
,
K.
Karcher
, and
M.
Rollwage
, “
Coherent active methods for applications in rooms acoustics
,”
J. Acoust. Soc. Am.
78
,
1426
1434
(
1985
).
20.
F. O.
Bustamante
and
P. A.
Nelson
, “
An adaptive controller for the active absorption of sound
,”
J. Acoust. Soc. Am.
91
,
2740
2747
(
1992
).
21.
O.
Lacóur
,
M. A.
Galland
, and
D.
Thenail
, “
Preliminary experiments on noise reduction in cavities using active impedance changes
,”
J. Sound Vib.
230
,
69
99
(
2000
).
22.
H. F.
Olson
and
E. G.
May
, “
Electronic sound absorber
,”
J. Acoust. Soc. Am.
25
,
1130
1136
(
1953
).
23.
D.
Guicking
and
E.
Lorentz
, “
An active sound absorber with porous plate
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
106
,
389
392
(
1984
).
24.
M. A.
Galland
,
B.
Mazeaud
, and
N.
Sellen
, “
Hybrid passive/active absorbers for flow ducts
,”
Appl. Acoust.
66
,
691
708
(
2005
).
25.
G.
Montseny
, “
Diffusive representation of pseudo-differential time-operator
,”
ESAIM: Proceedings, fractional differential systems: Models, methods and applications
,
5
,
159
175
(
1998
).
26.
D.
Matignon
,
J.
Audounet
, and
G.
Montseny
, “
Fractional integrodifferential boundary control of the Euler-Bernoulli beam
,”
Conference on Decision and Control, IEEE-CSS
,
1998
, pp.
4973
4978
.
27.
D.
Matignon
,
J.
Audounet
, and
G.
Montseny
, “
Smart energy decay for wave equations with damping of fractional order
,”
Fourth International Conference on Mathematical and Numerical Aspects of Wave Propagation Phenomena
,
1998
, pp.
638
640
.
28.
I.
Lasiecka
and
R.
Triggiani
, “
Exact controllability of the wave equation with Neumann boundary control
,”
Appl. Math. Optim.
19
,
243
290
(
1989
).
29.
N.
Tanaka
and
Y.
Kikushima
, “
Optimal vibration feedback control of an Euler-Bernoulli beam: Toward realization of the active skin method
,”
J. Vibr. Acoust.
121
,
174
182
(
1999
).
30.
N.
Tanaka
and
H.
Sakano
, “
Cluster power flow control of a distributed-parameter planar structure for generating a vibration-free zone
,”
Smart Mater. Struct.
16
,
47
56
(
2007
).
31.
A. C.
Galucio
,
J. F.
Deü
, and
R.
Ohayon
, “
A fractional derivative viscoelastic model for hybrid active-passive damping treatments in time domain—Application to sandwich beams
,”
J. Intell. Mater. Syst. Struct.
16
,
33
45
(
2005
).
32.
M. Á.
Fernández
and
P.
Le Tallec
, “
Linear stability analysis in fluidstructure interaction with transpiration. Part I: Formulation and mathematical analysis
,”
Comput. Methods Appl. Mech. Eng.
192
,
4805
4835
(
2003
).
You do not currently have access to this content.