This paper applies Bayesian inference, including model selection and posterior parameter inference, to inversion of seabed reflection data to resolve sediment structure at a spatial scale below the pulse length of the acoustic source. A practical approach to model selection is used, employing the Bayesian information criterion to decide on the number of sediment layers needed to sufficiently fit the data while satisfying parsimony to avoid overparametrization. Posterior parameter inference is carried out using an efficient Metropolis–Hastings algorithm for high-dimensional models, and results are presented as marginal-probability depth distributions for sound velocity, density, and attenuation. The approach is applied to plane-wave reflection-coefficient inversion of single-bounce data collected on the Malta Plateau, Mediterranean Sea, which indicate complex fine structure close to the water-sediment interface. This fine structure is resolved in the geoacoustic inversion results in terms of four layers within the upper meter of sediments. The inversion results are in good agreement with parameter estimates from a gravity core taken at the experiment site.

1.
M. D.
Collins
,
W. A.
Kuperman
, and
H.
Schmidt
, “
Nonlinear inversion for ocean-bottom properties
,”
J. Acoust. Soc. Am.
93
,
2770
2783
(
1992
).
2.
C. E.
Lindsay
and
N. R.
Chapman
, “
Matched field inversion for geoacoustic model parameters using adaptive simulated annealing
,”
IEEE J. Ocean. Eng.
18
,
224
231
(
1993
).
3.
P.
Gerstoft
and
C. F.
Mecklenbräuker
, “
Ocean acoustic inversion with estimation of a posteriori probability distribution
,”
J. Acoust. Soc. Am.
104
,
808
819
(
1998
).
4.
C. F.
Mecklenbräuker
and
P.
Gerstoft
, “
Objective functions for ocean acoustic inversion derived by likelihood methods
,”
J. Comput. Acoust.
8
,
259
270
(
2000
).
5.
S. E.
Dosso
,
M. J.
Wilmut
, and
A.-L. S.
Lapinski
, “
An adaptive-hybrid algorithm for geoacoustic inversion
,”
IEEE J. Ocean. Eng.
26
,
324
336
(
2001
).
6.
C. W.
Holland
and
J.
Osler
, “
High-resolution geoacoustic inversion in shallow water: A joint time- and frequency-domain technique
,”
J. Acoust. Soc. Am.
107
,
1263
1279
(
2000
).
7.
C. W.
Holland
, “
Seabed reflection measurement uncertainty
,”
J. Acoust. Soc. Am.
114
,
1861
1873
(
2003
).
8.
S. E.
Dosso
, “
Quantifying uncertainty in geoacoustic inversion. I. A fast Gibbs sampler approach
,”
J. Acoust. Soc. Am.
111
,
129
142
(
2002
).
9.
J.
Dettmer
,
S. E.
Dosso
, and
C. W.
Holland
, “
Uncertainty estimation in seismo-acoustic reflection travel-time inversion
,”
J. Acoust. Soc. Am.
122
,
161
176
(
2007
).
10.
J.
Dettmer
,
S. E.
Dosso
, and
C. W.
Holland
, “
Full wave-field reflection coefficient inversion
,”
J. Acoust. Soc. Am.
122
,
3327
3337
(
2007
).
11.
J.
Dettmer
,
S. E.
Dosso
, and
C. W.
Holland
, “
Joint time/frequency-domain inversion of reflection data for seabed geoacoustic profiles
,”
J. Acoust. Soc. Am.
123
,
1306
1317
(
2008
).
12.
C. W.
Holland
,
J.
Dettmer
, and
S. E.
Dosso
, “
Remote sensing of sediment density and velocity gradients in the transition layer
,”
J. Acoust. Soc. Am.
118
,
163
177
(
2005
).
13.
S. E.
Dosso
,
P. L.
Nielsen
, and
M. J.
Wilmut
, “
Data error covariance in matched-field geoacoustic inversion
,”
J. Acoust. Soc. Am.
119
,
208
219
(
2006
).
14.
S. E.
Dosso
and
C. W.
Holland
, “
Geoacoustic uncertainties from visco-elastic inversion of seabed reflection data
,”
IEEE J. Ocean. Eng.
31
,
657
671
(
2006
).
15.
D. J.
Battle
,
P.
Gerstoft
,
W. S.
Hodgkiss
,
W. A.
Kuperman
, and
P. L.
Nielsen
, “
Bayesian model selection applied to self-noise geoacoustic inversion
,”
J. Acoust. Soc. Am.
116
,
2043
2056
(
2004
).
16.
Y.
Jiang
,
N. R.
Chapman
, and
H. A.
DeFerrari
, “
Geoacoustic inversion of broadband data by matched beam processing
,”
J. Acoust. Soc. Am.
119
,
3707
3716
(
2006
).
17.
A. E.
Gelfand
,
D. K.
Dey
, and
H.
Chang
,
Bayesian Statistics 4
(
Oxford University Press
,
Oxford
,
1992
), pp.
147
167
.
18.
A. E.
Gelfand
and
D. K.
Dey
, “
Bayesian model choice: Asymptotics and exact calculations
,”
J. R. Stat. Soc.
56
,
501
514
(
1994
).
19.
D. C.
Montgomery
and
E. A.
Peck
,
Introduction to Linear Regression Analysis
(
Wiley
,
New York
,
1992
).
20.
R. L.
Parker
,
Geophysical Inverse Theory
(
Princeton University Press
,
Princeton, NJ
,
1994
).
21.
D. J. C.
MacKay
,
Information Theory, Inference, and Learning Algorithms
(
Cambridge University Press
,
Cambridge
,
2003
).
22.
H.
Akaike
,
Proceedings of the Second International Symposium in Information Theory
(
Akademiai Kiado
,
Budapest
,
1973
), pp.
267
281
.
23.
R. E.
Kass
and
A. E.
Raftery
, “
Bayes factors
,”
J. Am. Stat. Assoc.
90
,
773
795
(
1995
).
24.
G.
Schwartz
, “
Estimating the dimension of a model
,”
Ann. Stat.
6
,
461
464
(
1978
).
25.
S. E.
Dosso
and
M. J.
Wilmut
, “
Uncertainty estimation in simulataneous Bayesian tracking and environmental inversion
,”
J. Acoust. Soc. Am.
124
,
82
97
(
2008
).
26.
A. F. M.
Smith
, “
Bayesian computational methods
,”
Philos. Trans. R. Soc. London, Ser. A
337
,
369
386
(
1991
).
27.
A. F. M.
Smith
and
G. O.
Roberts
, “
Bayesian computation via the Gibbs sampler and related Markov Chain Monte Carlo methods
,”
J. R. Stat. Soc. Ser. B (Methodol.)
55
,
3
23
(
1993
).
28.
Markov Chain Monte Carlo in Practice
,
Interdisciplinary Statistics
, edited by
W. R.
Gilks
,
S.
Richardson
, and
D. J.
Spiegelhalter
(
Chapman and Hall
, London/CRC,
Boca Raton, FL
,
1996
).
29.
M.
Sambridge
and
K.
Mosegaard
, “
Monte Carlo methods in geophysical inverse problems
,”
Rev. Geophys.
40
,
3
1
3
29
(
2002
).
30.
A.
Tarantola
,
Inverse Problem Theory and Methods for Model Parameter Estimation
(
Siam
,
Philadelphia, PA
,
2005
).
31.
S. E.
Dosso
and
M. J.
Wilmut
, “
Data uncertainty estimation in matched-field geoacoustic inversion
,”
IEEE J. Ocean. Eng.
31
,
470
479
(
2005
).
32.
A.
Malinverno
and
V. A.
Briggs
, “
Expanded uncertainty quantification in inverse problems: Hierarchichal Bayes and empirical Bayes
,”
Geophysics
69
,
1005
1016
(
2004
).
33.
M.
Sambridge
,
K.
Gallagher
,
A.
Jckson
, and
P.
Rickwood
, “
Trans-dimensional inverse problems, model comparison and the evidence
,”
Geophys. J. Int.
167
,
528
542
(
2006
).
34.
N.
Metropolis
,
A.
Rosenbluth
,
M.
Rosenbluth
, and
A. T. A. E.
Teller
, “
Equations of state calculations by fast computing machines
,”
J. Chem. Phys.
21
,
1087
1092
(
1953
).
35.
W. K.
Hastings
, “
Monte Carlo sampling methods using markov chains and their applications
,”
Biometrika
57
,
97
109
(
1970
).
36.
W.
Gropp
,
E.
Lusk
, and
A.
Skjellum
,
Using MPI, Portable Parallel Programming With the Message-Passing Interface
(
MIT
,
Cambridge, MA
,
1999
).
37.
S.
Chib
, “
Marginal likelihood from the Gibbs output
,”
J. Am. Stat. Assoc.
90
,
1313
1321
(
1995
).
38.
J.
Skilling
,
Bayesian Statistics 8
(
Oxford University Press
,
Oxford
,
2007
), pp.
491
524
.
39.
M. A.
Newton
and
A. E.
Raftery
, “
Approximate Bayesian inference with the weighted likelihood bootstrap (with discussions)
,”
J. R. Stat. Soc.
56
,
3
48
(
1994
).
40.
J. J. K. O.
Ruanaidh
and
W. J.
Fitzgerald
,
Numerical Bayesian Methods Applied to Signal Processing
(
Springer
,
New York
,
1996
).
41.
S.
Chib
and
I.
Jeliazkov
, “
Marginal likelihood from the Metropolis-Hastings output
,”
J. Am. Stat. Assoc.
96
,
270
281
(
2001
).
42.
J. R.
Shaw
,
M.
Bridges
, and
M. P.
Hobson
, “
Efficient Bayesian inference for multimodal problems in cosmology
,”
Mon. Not. R. Astron. Soc.
378
,
1365
1370
(
2006
).
43.
I.
Murray
, “
Advances in Markov chain Monte Carlo methods
,” Ph.D. thesis,
Gatsby Computational Neuroscience Unit, University College London
, London (
2007
).
44.
P. J.
Green
, “
Reversible jump markov chain Monte Carlo computation and bayesian model determination
,”
Biometrika
82
,
711
732
(
1995
).
45.
A.
Malinverno
and
W. S.
Leaney
, “
Monte-Carlo Bayesian look-ahead inversion of walkaway vertical seismic profiles
,”
Geophys. Prospect.
53
,
689
703
(
2005
).
46.
A.
Gelman
and
X.-L.
Meng
, “
Simulating normalizing constants: From importance sampling to bridge sampling to path sampling
,”
Stat. Sci.
13
,
163
185
(
1998
).
47.
R. M.
Neal
, “
Annealed importance sampling
,”
Stat. Comput.
11
,
125
139
(
2001
).
48.
R. E.
Kass
and
A. E.
Raftery
, “
A reference Bayesian tests for nested hypotheses and its relationship to the Schwarz criterion
,”
J. Am. Stat. Assoc.
90
,
928
934
(
1995
).
49.
C. H.
Harrison
and
J. A.
Harrison
, “
A simple relationship between frequency and range averages for broadband sonar
,”
J. Acoust. Soc. Am.
97
,
1314
1317
(
1995
).
You do not currently have access to this content.