Some further refinements are described for the T-matrix approach to acoustic scattering. From the structure of the matrices involved, one can infer the Rayleigh limit explicitly for objects having no density contrast. One finds TRay=iRR2, where the R-matrix involves integrals of the regular spherical wave functions over the object’s surface. The index of refraction and loss factor can be chosen as desired, and energy balance and reciprocity requirements are found to be met. The derivation can be extended to obtain the Rayleigh expansion, effectively describing T as a series in ascending powers of the ratio of object size to wavelength. In trial cases, the series converges throughout the Rayleigh region and somewhat beyond. Bodies of high aspect ratio are also considered, where difficulties arise due to precision loss during numerical integration. Loss ranges from 4 or 5 significant figures (2:1 spheroid) to 22 figures (40:1 spheroid) or more. A class of surfaces has been found for which this problem can be avoided, however, enabling one to treat a variety of body shapes up to aspect ratios of 100:1 with no difficulty.

1.
Acoustic, Electromagnetic and Elastic Wave Scattering—Focus on the T-Matrix Approach
, edited by
V. K.
Varadan
and
V. V.
Varadan
(
Pergamon
,
New York
,
1980
).
2.
V. V.
Varadan
,
A.
Lakhtakia
, and
V. K.
Varadan
, “
Comments on recent criticism of the T-matrix method
,”
J. Acoust. Soc. Am.
84
,
2280
2284
(
1988
).
3.
M. I.
Mishchenko
,
G.
Videen
,
V. A.
Babenko
,
N. G.
Khlebtsov
, and
T.
Wriedt
, “
T-matrix theory of electromagnetic scattering by particles and its applications: A comprehensive reference database
,”
J. Quant. Spectrosc. Radiat. Transf.
88
,
357
406
(
2004
).
4.
M. I.
Mishchenko
,
G.
Videen
,
V. A.
Babenko
,
N. G.
Khlebtsov
, and
T.
Wriedt
, “
ComprehensiveT-matrix reference database: A 2004-06 update
,”
J. Quant. Spectrosc. Radiat. Transf.
106
,
304
324
(
2007
);
see also
M. I.
Mishchenko
,
G.
Videen
,
N. G.
Khlebtsov
,
T.
Wriedt
, and
N. T.
Zakharova
, “
Comprehensive T-matrix reference database: A 2006-07 update
,”
J. Quant. Spectrosc. Radiat. Transf.
109
,
1447
1460
(
2008
).
5.
M. I.
Mishchenko
,
L. D.
Travis
, and
D. W.
Mackowski
, “
T-matrix computations of light scattering by non-spherical particles: A review
,”
J. Quant. Spectrosc. Radiat. Transf.
55
,
535
575
(
1996
);
see also
M. I.
Mishchenko
,
L. D.
Travis
, and
A. A.
Lacis
,
Scattering, Absorption, and Emission of Light by Small Particles
(
Cambridge University Press
,
Cambridge
,
2002
), Chap. 5.
6.
P. C.
Waterman
, “
The T-matrix revisited
,”
J. Opt. Soc. Am. A
24
,
2257
2267
(
2007
).
7.
M. I.
Mishchenko
and
L. D.
Travis
, “
T-matrix computations of light scattering by large spheroidal particles
,”
Opt. Commun.
109
,
16
21
(
1994
).
8.
S.
Havemann
and
A. J.
Baran
, “
Calculation of the phase matrix elements of elongated hexagonal ice columns using the T-matrix method
,”
J. Quant. Spectrosc. Radiat. Transf.
89
,
87
96
(
2004
).
9.
A.
Sarkissian
,
C. F.
Gaumond
, and
L. R.
Dragonette
, “
T-matrix implementation of forward scattering from rigid structures
,”
J. Acoust. Soc. Am.
94
,
3448
3453
(
1993
).
10.
P. C.
Waterman
, “
New formulation of acoustic scattering
,”
J. Acoust. Soc. Am.
45
,
1417
1429
(
1969
).
11.
A. S.
Householder
,
The Theory of Matrices in Numerical Analysis
(
Blaisdell
,
Waltham
,
1964
), p.
54
.
12.
C.
Feuillade
and
M. F.
Werby
, “
Resonances of deformed gas bubbles in liquids
,”
J. Acoust. Soc. Am.
96
,
3684
3692
(
1994
).
13.
H. A.
Antosiewicz
, in
Handbook of Mathematical Functions
, edited by
M.
Abramowitz
and
I. A.
Stegun
(
U. S. Government Printing Offices
,
Washington, DC
,
1964
), Chap. 10.
14.
P. C.
Waterman
, “
Symmetry, unitarity, and geometry in electromagnetic scattering
,”
Phys. Rev. D
3
,
825
839
(
1971
).
15.
M. I.
Mishchenko
and
L. D.
Travis
, “
Capabilities and limitations of a current Fortran implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers
,”
J. Quant. Spectrosc. Radiat. Transf.
60
,
309
324
(
1998
);
the programs themselves are available at www.giss.nasa.gov (Last viewed 7/31/
2008
).
You do not currently have access to this content.