The development of a fast multipole method (FMM) accelerated iterative solution of the boundary element method (BEM) for the Helmholtz equations in three dimensions is described. The FMM for the Helmholtz equation is significantly different for problems with low and high kD (where k is the wavenumber and D the domain size), and for large problems the method must be switched between levels of the hierarchy. The BEM requires several approximate computations (numerical quadrature, approximations of the boundary shapes using elements), and these errors must be balanced against approximations introduced by the FMM and the convergence criterion for iterative solution. These different errors must all be chosen in a way that, on the one hand, excess work is not done and, on the other, that the error achieved by the overall computation is acceptable. Details of translation operators for low and high kD, choice of representations, and BEM quadrature schemes, all consistent with these approximations, are described. A novel preconditioner using a low accuracy FMM accelerated solver as a right preconditioner is also described. Results of the developed solvers for large boundary value problems with 0.0001kD500 are presented and shown to perform close to theoretical expectations.

1.
L.
Greengard
,
The Rapid Evaluation of Potential Fields in Particle Systems
(
MIT
,
Cambridge, MA
,
1988
).
2.
N.
Nishimura
, “
Fast multipole accelerated boundary integral equation methods
,”
Appl. Mech. Rev.
55
,
299
324
(
2002
).
3.
M.
Fischer
, “
The fast multipole boundary element method and its application to structure-acoustic field interaction
,” Ph.D. dissertation,
Institut A für Mechanik der Universität Stuttgart
(
2004
).
4.
M.
Fischer
,
U.
Gauger
, and
L.
Gaul
, “
A multipole Galerkin boundary element method for acoustics
,”
Eng. Anal. Boundary Elem.
28
,
155
162
(
2004
).
5.
T.
Sakuma
and
Y.
Yasuda
, “
Fast multipole boundary element method for large-scale steady-state sound field analysis, Part I: Setup and validation
,”
Acust. Acta Acust.
88
,
513
525
(
2002
).
6.
S.
Schneider
, “
Application of fast methods for acoustic scattering and radiation problems
,”
J. Comput. Acoust.
11
,
387
401
(
2003
).
7.
L.
Shen
and
Y. J.
Liu
, “
An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the Burton–Miller formulation
,”
Comput. Mech.
40
,
461
472
(
2007
).
8.
Y.
Yasuda
and
T.
Sakuma
, “
Fast multipole boundary element method for large-scale steady-state sound field analysis, Part II: Examination of numerical items
,”
Acust. Acta Acust.
89
,
28
38
(
2003
).
9.
Y.
Yasuda
and
T.
Sakuma
, “
An effective setting of hierarchical cell structure for the fast multipole boundary element method
,”
J. Comput. Acoust.
13
,
47
70
(
2005
).
10.
M. S.
Tong
,
W. C.
Chew
, and
M. J.
White
, “
Multilevel fast multipole algorithm for acoustic wave scattering by truncated ground with trenches
,”
J. Acoust. Soc. Am.
123
,
2513
2521
(
2008
).
11.
B.
Chandrasekhar
and
S. M.
Rao
, “
Acoustic scattering from rigid bodies of arbitrary shape—double layer formulation
,”
J. Acoust. Soc. Am.
115
,
1926
1933
(
2004
).
12.
N. A.
Gumerov
and
R.
Duraiswami
,
Fast Multipole Methods for the Helmholtz Equation in Three Dimensions
(
Elsevier
,
Oxford, UK
,
2004
).
13.
N. A.
Gumerov
and
R.
Duraiswami
, “
Recursions for the computation of multipole translation and rotation coefficients for the 3-D Helmholtz equation
,”
SIAM J. Sci. Comput. (USA)
25
,
1344
1381
(
2003
).
14.
E.
Darve
and
P.
Havé
, “
Efficient fast multipole method for low-frequency scattering
,”
J. Comput. Phys.
197
,
341
363
(
2004
).
15.
L.
Greengrard
,
J.
Huang
,
V.
Rokhlin
, and
S.
Wandzura
, “
Accelerating fast multipole methods for the Helmholtz equation at low frequencies
,”
IEEE Comput. Sci. Eng.
5
,
32
38
(
1998
).
16.
V.
Rokhlin
, “
Diagonal forms of translation operators for the Helmholtz equation in three dimensions
,”
Appl. Comput. Harmon. Anal.
1
,
82
93
(
1993
).
17.
H.
Cheng
,
W. Y.
Crutchfield
,
Z.
Gimbutas
,
L. F.
Greengard
,
J. F.
Ethridge
,
J.
Huang
,
V.
Rokhlin
,
N.
Yarvin
, and
J.
Zhao
, “
A wideband fast multipole method for the Helmholtz equation in three dimensions
,”
J. Comput. Phys.
216
,
300
325
(
2006
).
18.
Fast and Efficient Algorithms in Computational Electromagnetics
, edited by
W. C.
Chew
,
J. M.
Jin
,
E.
Michelssen
, and
J.
Song
(
Artech House
,
Boston
,
2001
).
19.
Y.
Saad
, “
A flexible inner-outer preconditioned GMRES algorithm
,”
SIAM J. Sci. Comput. (USA)
14
,
461
469
(
1993
).
20.
A. J.
Burton
and
G. F.
Miller
, “
The application of the integral equation methods to the numerical solution of some exterior boundary-value problems
,”
Proc. R. Soc. London, Ser. A
323
,
201
210
(
1971
).
21.
L. H.
Chen
and
J.
Zhou
,
Boundary Element Methods
(
Academic
,
New York
,
1992
).
22.
S.
Kirkup
, “
The boundary element method in acoustics
,” http://www.boundary-element-method.com/acoustics/index.htm (Last viewed December 30,
2007
).
23.
Y.
Saad
and
M. H.
Schultz
, “
GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
7
,
856
869
(
1986
).
24.
N. A.
Gumerov
and
R.
Duraiswami
, “
Computation of scattering from clusters of spheres using the fast multiple method
,”
J. Acoust. Soc. Am.
117
,
1744
1761
(
2005
).
25.
E.
Darve
, “
The fast multipole method (I): Error analysis and asymptotic complexity
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
38
,
98
128
(
2000
).
26.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
National Bureau of Standards
,
Washington, DC
,
1964
).
27.
J. R.
Driscoll
and
D. M.
Healy
, Jr.
, “
Computing Fourier transforms and convolutions on the 2-sphere
,”
Adv. Appl. Math.
15
,
202
250
(
1994
).
28.
E.
Lutz
,
A. R.
Ingraffea
, and
L. J.
Gray
, “
Use of ‘simple solutions’ for boundary integral equation methods in elasticity and fracture analysis
,”
Int. J. Numer. Methods Eng.
35
,
1737
1751
(
1992
).
29.
D.
Colton
and
R.
Kress
,
Inverse Acoustic and Electromagnetic Scattering Theory
(
Springer-Verlag
,
Berlin
,
1998
).
You do not currently have access to this content.