Individual ultrasound contrast agent microbubbles (BR14) were characterized acoustically. The bubbles were excited at a frequency of 2MHz and at peak-negative pressure amplitudes of 60 and 100kPa. By measuring the transmit and receive transfer functions of both the transmit and receive transducers, echoes of individual bubbles were recorded quantitatively and compared to simulated data. At 100kPa driving pressure, a second harmonic response was observed for bubbles with a size close to their resonance size. Power spectra were derived from the echo waveforms of bubbles of different sizes. These spectra were in good agreement with those calculated from a Rayleigh–Plesset-type model, incorporating the viscoelastic properties of the phospholipid shell. Small bubbles excited below their resonance frequency have a response dominated by the characteristics of their phospholipid shell, whereas larger bubbles, excited above resonance, have a response identical to those of uncoated bubbles of similar size.

1.
N.
de Jong
and
L.
Hoff
, “
Ultrasound scattering properties of albunex microspheres
,”
Ultrasonics
31
,
175
181
(
1993
).
2.
N.
de Jong
,
L.
Hoff
,
T.
Skotland
, and
N.
Bom
, “
Absorption and scatter of encapsulated gas filled microspheres: Theoretical considerations and some measurements
,”
Ultrasonics
30
,
95
103
(
1992
).
3.
J. M.
Gorce
,
M.
Arditi
, and
M.
Schneider
, “
Influence of bubble size distribution on the echogenecity of ultrasound contrast agents: A study of SonoVue™
,”
Invest. Radiol.
35
,
661
671
(
2000
).
4.
K.
Sarkar
,
W. T.
Shi
,
D.
Chatterjee
, and
F.
Forsberg
, “
Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation
,”
J. Acoust. Soc. Am.
118
,
539
550
(
2005
).
5.
N.
de Jong
,
P. J. A.
Frinking
,
A.
Bouakaz
,
M.
Goorden
,
T.
Schuurmans
,
X.
Jingping
, and
F.
Mastik
, “
Optical imaging of contrast agent microbubbles in an ultrasound field with a 100-MHZ camera
,”
Ultrasound Med. Biol.
26
,
487
492
(
2000
).
6.
P. A.
Dayton
,
K. E.
Morgan
,
A. L.
Klibanov
,
G. H.
Brandenburger
, and
K. W.
Ferrara
, “
Optical and acoustical observations of the effects of ultrasound on contrast agents
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
46
,
220
232
(
1999
).
7.
J. E.
Chomas
,
P. A.
Dayton
,
J.
Allen
,
K. E.
Morgan
, and
K. W.
Ferrara
, “
Mechanisms of contrast agent destruction
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
48
,
232
248
(
2001
).
8.
S. M.
van der Meer
,
B.
Dollet
,
M.
Voormolen
,
C. T.
Chin
,
A.
Bouakaz
,
N.
de Jong
,
M.
Versluis
, and
D.
Lohse
, “
Microbubble spectroscopy of ultrasound contrast agents
,”
J. Acoust. Soc. Am.
121
,
648
656
(
2007
).
9.
P.
Marmottant
,
S.
van der Meer
,
M.
Emmer
,
M.
Versluis
,
N.
de Jong
,
S.
Hilgenfeldt
, and
D.
Lohse
, “
A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture
,”
J. Acoust. Soc. Am.
118
,
3499
3505
(
2005
).
10.
N.
de Jong
,
M.
Emmer
,
C. T.
Chin
,
A.
Bouakaz
,
F.
Mastik
,
D.
Lohse
, and
M.
Versluis
, “
“Compression-only” behavior of phospholipid-coated contrast bubbles
,”
Ultrasound Med. Biol.
33
,
653
656
(
2007
).
11.
M.
Emmer
,
A.
van Wamel
, and
D.
Goertz
, and
N.
de Jong
, “
The onset of microbubble vibration
,”
Ultrasound Med. Biol.
33
,
941
949
(
2007
).
12.
B.
Dollet
,
S. M.
van der Meer
,
V.
Garbin
,
D.
Lohse
,
N.
de Jong
, and
M.
Versluis
, “
Non-spherical oscillations of ultrasound contrast agents
,”
Ultrasound Med. Biol.
34
,
1465
1473
(
2008
).
13.
S.
Zhao
,
K. W.
Ferrara
, and
P. A.
Dayton
, “
Asymmetric oscillation of adherent targeted ultrasound contrast agents
,”
Appl. Phys. Lett.
87
,
134103
3
(
2005
).
14.
H. J.
Vos
,
B.
Dollet
,
J. G.
Bosch
,
M.
Versluis
, and
N.
de Jong
, “
Nonspherical vibrations of microbubbles in contact with a wall -a pilot study at low mechanical index
,”
Ultrasound Med. Biol.
34
,
685
688
(
2008
).
15.
C. F.
Caskey
,
S. M.
Stieger
,
S.
Qin
,
P. A.
Dayton
, and
K. W.
Ferrara
, “
Direct observations of ultrasound microbubble contrast agent interaction with the microvessel wall
,”
J. Acoust. Soc. Am.
122
,
1191
1200
(
2007
).
16.
V.
Sboros
,
S. D.
Pye
,
C. A.
MacDonald
,
J.
Gomatam
,
C. M.
Moran
, and
W. N.
McDicken
, “
Absolute measurement of ultrasonic backscatter from single microbubbles
,”
Ultrasound Med. Biol.
31
,
1063
1072
(
2005
).
17.
V.
Sboros
,
S. D.
Pye
,
T. A.
Anderson
,
C. M.
Moran
, and
W. N.
McDicken
, “
Acoustic rayleigh scattering at individual micron-sized bubbles
,”
Appl. Phys. Lett.
90
,
123902
3
(
2007
).
18.
A. L.
Klibanov
,
P. T.
Rasche
,
M. S.
Hughes
,
J. K.
Wojdyla
,
K. P.
Galen
,
J. H.
Wible
, and
G. H.
Brandenburger
, “
Detection of individual microbubbles of ultrasound contrast agents: imaging of free-floating and targeted bubbles
,”
Invest. Radiol.
39
,
187
195
(
2004
).
19.
A. L.
Klibanov
,
P. T.
Rasche
,
M. S.
Hughes
,
J. K.
Wojdyla
,
K. P.
Galen
, Jr.
,
J. H.
Wible
, and
G. H.
Brandenburger
, “
Detection of individual microbubbles of an ultrasound contrast agent: Fundamental and pulse inversion imaging
,”
Acad. Radiol.
9
,
279
281
(
2002
).
20.
D. L.
Miller
, “
Ultrasonic detection of resonant cavitation bubbles in a flow tube by their second-harmonic emissions
,”
Ultrasonics
19
,
217
224
(
1981
).
21.
C. C.
Church
, “
The effect of an elastic solid surface layer on the radial pulsations of gas bubbles
,”
J. Acoust. Soc. Am.
97
,
1510
1521
(
1995
).
22.
S.
Hilgenfeldt
,
D.
Lohse
, and
M.
Zomack
, “
Response of bubbles to diagnostic ultrasound: a unifying theoretical approach
,”
Eur. J. Phys.
4
,
247
255
(
1998
).
23.
T. G.
Leighton
,
The Acoustic Bubble
(
Academic
,
London
,
1994
).
24.
J. B.
Keller
and
M.
Miksis
, “
Bubble oscillations of large amplitude
,”
J. Acoust. Soc. Am.
68
,
628
633
(
1980
).
25.
M. S.
Plesset
and
A.
Prosperetti
, “
Bubble dynamics and cavitation
,”
Annu. Rev. Fluid Mech.
9
,
145
185
(
1977
).
26.
M. P.
Brenner
,
S.
Hilgenfeldt
, and
D.
Lohse
, “
Single-bubble sonoluminescence
,”
Rev. Mod. Phys.
74
,
425
483
(
2002
).
27.
W.
Lauterborn
, “
Numerical investigation of nonlinear oscillations of gas bubbles in liquids
,”
J. Acoust. Soc. Am.
59
,
283
293
(
1976
).
28.
A.
Prosperetti
, “
Nonlinear oscillations of gas bubbles in liquids: steady-state solutions
,”
J. Acoust. Soc. Am.
56
,
878
885
(
1974
).
29.
X.
Chen
,
K. Q.
Schwarz
, and
K. J.
Parker
, “
Radiation pattern of a focussed transducer: A numerically convergent solution
,”
J. Acoust. Soc. Am.
94
,
2979
2991
(
1993
).
30.
X.
Chen
,
K. J.
Parker
, and
K. Q.
Schwarz
, “
Acoustic coupling from a focussed transducer to a flat plate and back to the transducer
,”
J. Acoust. Soc. Am.
95
,
3049
3054
(
1994
).
31.
X.
Chen
,
D.
Philips
,
K. Q.
Schwarz
,
J. G.
Mottley
, and
K. J.
Parker
, “
The measurement of backscatter coefficient from a broadband pulse-echo system: A new formulation
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
44
,
515
524
(
1997
).
32.
T. L.
Szabo
,
B. U.
Karbeyaz
,
R. O.
Cleveland
, and
E. L.
Miller
, “
Determining the pulse-echo electromechanical characteristic of a transducer using flat plates and point targets
,”
J. Acoust. Soc. Am.
116
,
90
96
(
2004
).
33.
M.
Arditi
,
F. S.
Foster
, and
J. W.
Hunt
, “
Transient fields of concave annular arrays
,”
Ultrason. Imaging
3
,
37
61
(
1981
).
34.
K. R.
Erikson
, “
Tone-burst testing of pulse-echo transducers
,”
IEEE Trans. Sonics Ultrason.
SU-26
,
7
14
(
1979
).
You do not currently have access to this content.