Sparse signal representations from overcomplete dictionaries are the most recent technique in the signal processing community. Applications of this technique extend into many fields. In this paper, this technique is utilized to cope with ultrasonic flaw detection and noise suppression problem. In particular, a noisy ultrasonic signal is decomposed into sparse representations using a sparse Bayesian learning algorithm and an overcomplete dictionary customized from a Gabor dictionary by incorporating some a priori information of the transducer used. Nonlinear postprocessing including thresholding and pruning is then applied to the decomposed coefficients to reduce the noise contribution and extract the flaw information. Because of the high compact essence of sparse representations, flaw echoes are packed into a few significant coefficients, and noise energy is likely scattered all over the dictionary atoms, generating insignificant coefficients. This property greatly increases the efficiency of the pruning and thresholding operations and is extremely useful for detecting flaw echoes embedded in background noise. The performance of the proposed approach is verified experimentally and compared with the wavelet transform signal processor. Experimental results to detect ultrasonic flaw echoes contaminated by white Gaussian additive noise or correlated noise are presented in the paper.

1.
X.
Li
,
N. M.
Bilgutary
, and
R.
Murthy
, “
Spectral histogram using the minimization algorithm: Theory and applications to flaw detection
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
39
,
279
284
(
1992
).
2.
V.
Newhouse
,
N.
Bilgutay
,
J.
Saniie
, and
E.
Furgason
, “
Flaw to gain echo enhancement by split spectrum processing
,”
Ultrasonics
20
,
59
68
(
1982
).
3.
A.
Abbate
,
J.
Koay
,
J.
Frankel
,
S.
Schroeder
, and
P.
Das
, “
Signal detection and noise suppression using a wavelet transform signal processor: Application to ultrasonic flaw detection
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
44
,
14
26
(
1997
).
4.
L.
Satyanarayan
,
K.
Bharath Kumaran
,
C. V.
Krishnamurthy
, and
K.
Balasubramaniam
, “
Inverse method for detection and sizing of cracks in thin sections using a hybrid genetic algorithm based signal parameterisation
,”
Theor. Appl. Fract. Mech.
49
,
185
198
(
2008
).
5.
R.
Demirli
and
J.
Saniie
, “
Model-based estimation of ultrasonic echoes Part I: Analysis and algorithms
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
48
,
787
802
(
2001
).
6.
D. L.
Donoho
, “
De-noising by soft thresholding
,”
IEEE Trans. Inf. Theory
41
,
613
627
(
1995
).
7.
D. L.
Donoho
and
I. M.
Johnstone
, “
Minimax estimation via wavelet shrinkage
,”
Ann. Stat.
26
,
879
921
(
1998
).
8.
D. L.
Donoho
and
I. M.
Johnstone
, “
Ideal spatial adaptation by wavelet shrinkage
,”
Biometrika
81
,
425
455
(
1994
).
9.
G. M.
Zhang
,
D. M.
Harvey
, and
D. R.
Braden
, “
An improved acoustic microimaging technique with learning overcomplete representation
,”
J. Acoust. Soc. Am.
118
,
3706
3720
(
2005
).
10.
G. M.
Zhang
,
D. M.
Harvey
, and
D. R.
Braden
, “
Adaptive sparse representations of ultrasonic signals for acoustic microimaging
,”
J. Acoust. Soc. Am.
120
,
862
869
(
2006
).
11.
S. G.
Mallat
and
Z.
Zhang
, “
Matching pursuit with time-frequency dictionaries
,”
IEEE Trans. Signal Process.
41
,
3397
3415
(
1993
).
12.
S. S.
Chen
, “
Basis pursuit
,” Ph.D. thesis,
Stanford University
,
1995
.
13.
B. D.
Rao
and
K.
Kreurz-Delgado
, “
An affine scaling methodology for the best basis selection
,”
IEEE Trans. Signal Process.
47
,
187
200
(
1999
).
14.
D. P.
Wipf
and
B. D.
Rao
, “
Sparse Bayesian learning for basis selection
,”
IEEE Trans. Signal Process.
52
,
2153
2164
(
2004
).
15.
M. S.
Lewicki
and
T. J.
Sejnowski
, “
Learning overcomplete representations
,”
Neural Comput.
12
,
337
365
(
2000
).
16.
M.
Aharon
,
M.
Elad
, and
A. M.
Bruckstein
, “
K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representation
,”
IEEE Trans. Signal Process.
54
,
4311
4322
(
2006
).
17.
M.
Elad
and
M.
Aharon
, “
Image denoising via sparse and redundant representations over learned dictionaries
,”
IEEE Trans. Image Process.
15
,
3736
3745
(
2006
).
18.
O.
Williams
,
A.
Blake
, and
R.
Cipolla
, “
Sparse Bayesian learning for efficient visual tracking
,”
IEEE Trans. Pattern Anal. Mach. Intell.
27
,
1292
1304
(
2005
).
19.
G. M.
Zhang
,
D. M.
Harvey
, and
D. R.
Braden
, “
Advanced acoustic microimaging using sparse signal representation for the evaluation of microelectronic packages
,”
IEEE Trans. Adv. Packag.
29
,
271
283
(
2006
).
20.
G. M.
Zhang
,
D. M.
Harvey
, and
D. R.
Braden
, “
Effect of sparse basis selection on ultrasonic signal representation
,”
Ultrasonics
45
,
82
91
(
2006
).
21.
G. M.
Zhang
,
D. M.
Harvey
, and
D. R.
Braden
, “
Microelectronic package characterisation using scanning acoustic microscopy
,”
NDT & E Int.
40
,
609
617
(
2007
).
22.
I. T.
Jolliffie
,
Principle Component Analysis
(
Springer-Verlag
,
New York
,
1986
).
23.
S.
Roberts
and
R.
Everson
,
Independent Component Analysis: Principles and Practice
(
Cambridge University Press
,
Cambridge, UK
,
2001
).
24.
D. L.
Donoho
and
M.
Elad
, “
Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization
,”
Proc. Natl. Acad. Sci. U.S.A.
100
,
2197
2202
(
2003
).
25.
R.
Coifman
and
D. L.
Donoho
, “
Translation invariant de-noising
,”
Wavelets and Statistics
,
Lecture Notes in Statistics
(
Springer-Verlag
,
New York
,
1995
), pp.
125
150
.
26.
W. T.
Freeman
and
E. H.
Adelson
, “
The design and use of steerable filters
,”
IEEE Trans. Pattern Anal. Mach. Intell.
13
,
891
906
(
1991
).
27.
J.-L.
Starck
,
E. J.
Candes
, and
D. L.
Donoho
, “
The curvelet transform for image denoising
,”
IEEE Trans. Image Process.
11
,
670
684
(
2002
).
28.
R.
Eslami
and
H.
Radha
, “
Translation-invariant contourlet transform and its application to image denoising
,”
IEEE Trans. Image Process.
15
,
3362
3374
(
2006
).
29.
G.
Zhang
,
C.
Hou
,
Y.
Wang
, and
S.
Zhang
, “
Optimal frequency-to-bandwidth ratio of wavelet in ultrasonic non-destructive evaluation
,”
Ultrasonics
39
,
13
17
(
2001
).
30.
Gabor Analysis and Algorithms: Theory and Application
, edited by
H. G.
Feichtinger
and
T.
Strohmer
(
Birkhauser
,
Cambridge, MA
,
1998
).
31.
K.
Kreurz-Delgado
,
J. F.
Murray
, and
B. D.
Rao
, “
Dictionary learning algorithms for sparse representation
,”
Neural Comput.
15
,
349
396
(
2003
).
You do not currently have access to this content.