An investigation on the resonance frequency shift for a plane-wave mode in a cylindrical cavity produced by a rigid sphere is reported in this paper. This change of the resonance frequency has been previously considered as a cause of oscillational instabilities in single-mode acoustic levitation devices. It is shown that the use of the Boltzmann–Ehrenfest principle of adiabatic invariance allows the derivation of an expression for the resonance frequency shift in a simpler and more direct way than a method based on a Green’s function reported in literature. The position of the sphere can be any point along the axis of the cavity. Obtained predictions of the resonance frequency shift with the deduced equation agree quite well with numerical simulations based on the boundary element method. The results are also confirmed by experiments. The equation derived from the Boltzmann–Ehrenfest principle appears to be more general, and for large spheres, it gives a better approximation than the equation previously reported.

1.
M.
Wiklund
,
J.
Toivonen
,
M.
Tirri
,
P.
Hänninen
, and
H. M.
Hertz
, “
Ultrasonic enrichment of microspheres for ultrasensitive biomedical analysis in confocal laser-scanning fluorescence detection
,”
J. Appl. Phys.
96
,
1242
1248
(
2004
).
2.
S.
Santesson
and
S.
Nilsson
, “
Airborne chemistry: Acoustic levitation in chemical analysis
,”
Anal. Bioanal. Chem.
378
,
1705
1709
(
2004
).
3.
W. J.
Xie
,
C. D.
Cao
,
Y. J.
,
Z. Y.
Hong
, and
B.
Wei
, “
Acoustic method for levitation of small living animals
,”
Appl. Phys. Lett.
89
,
214102
(
2006
).
4.
R. C.
Field
and
S.
Scheeline
, “
Design and implementation of an efficient acoustically levitated drop reactor for in stillo measurements
,”
Rev. Sci. Instrum.
78
,
125102
(
2007
).
5.
J.
Rudnick
and
M.
Barmatz
, “
Oscillational instabilities in single-mode acoustic levitator
,”
J. Acoust. Soc. Am.
87
,
81
92
(
1990
).
6.
E.
Leung
,
C. P.
Lee
,
N.
Jacobi
, and
T. G.
Wang
, “
Resonance frequency shift of an acoustic chamber containing a rigid sphere
,”
J. Acoust. Soc. Am.
72
,
615
620
(
1982
).
7.
M.
El-Raheb
and
P.
Wagner
, “
Acoustic propagation in rigid ducts with blockage
,”
J. Acoust. Soc. Am.
72
,
1046
1055
(
1982
).
8.
M.
Barmatz
,
J. L.
Allen
, and
M.
Gaspar
, “
Experimental investigation of the scattering effects of a sphere in a cylindrical resonant chamber
,”
J. Acoust. Soc. Am.
73
,
725
732
(
1983
).
9.
F. L.
Curzon
and
D.
Plant
, “
Using perturbed resonant frequencies to study eigenmodes of an acoustic resonator
,”
Am. J. Phys.
54
,
367
372
(
1986
).
10.
B.
Mehl
and
R. N.
Hill
, “
Acoustic eigenfrequencies of cavities with an internal obstacle: A modified perturbation theory
,”
J. Acoust. Soc. Am.
85
,
1841
1851
(
1989
).
11.
J. A.
Roumeliotis
,
J. D.
Kanellopoulos
, and
J. G.
Fikioris
, “
Acoustic eigenfrequencies of a cylindrical/rectangular cavity with an eccentric inner small sphere
,”
J. Franklin Inst.
329
,
413
427
(
1992
).
12.
J. A.
Roumeliotis
,
J. D.
Kanellopoulos
, and
J. G.
Fikioris
, “
Corrigendum
,”
J. Franklin Inst.
330
,
1235
1236
(
1993
).
13.
J. A.
Roumeliotis
, “
Eigenfrequencies of an acoustic rectangular cavity containing a rigid small sphere
,”
J. Acoust. Soc. Am.
93
,
1710
1715
(
1993
).
14.
J. A.
Roumeliotis
,
J. D.
Kanellopoulos
, and
J. G.
Fikioris
, “
Acoustic resonant frequency shifts is a spherical cavity with an eccentric inner small sphere
,”
J. Acoust. Soc. Am.
90
,
1144
1148
(
1991
).
15.
W. J.
Xie
and
B.
Wei
, “
Resonance shift of single-axis acoustic levitation
,”
Chin. Phys. Lett.
24
,
135
138
(
2007
).
16.
M. L.
Cordero
and
N.
Mujica
, “
Resonant frequency shifts induced by a large spherical object in an air-filled acoustic cavity
,”
J. Acoust. Soc. Am.
121
,
EL244
EL250
(
2007
).
17.
W. E.
Smith
, “
Generalization of the Boltzmann-Ehrenfest adiabatic theorem in acoustics
,”
J. Acoust. Soc. Am.
50
,
386
388
(
1971
).
18.
S.
Putterman
,
J.
Rudnick
, and
M.
Barmatz
, “
Acoustic levitation and the Boltzmann-Ehrenfest principle
,”
J. Acoust. Soc. Am.
85
,
68
71
(
1989
).
19.
P. M.
Morse
and
H.
Feshbach
,
Methods of Theoretical Physics
(
McGraw-Hill
,
New York
,
1953
), Vol. II, Eq. (11.3.45).
20.
T. G.
Wang
and
C. P.
Lee
, “
Radiation pressure and acoustic levitation
,” in
Nonlinear Acoustics
, edited by
M. F.
Hamilton
and
D. T.
Blackstock
(
Academic
,
San Diego
,
1998
), Chap. 6, pp.
177
205
.
21.
P. M.
Juhl
, “
An axisymmetric integral equation formulation for free space non-axisymmetric radiation and scattering of a known incident wave
,”
J. Sound Vib.
163
,
397
406
(
1993
).
22.
Guide to the Expression of Uncertainty in Measurement, BIPM, IEC, IFCC, ISO, IUPAP, IUPAC, OIML (
1995
).
You do not currently have access to this content.