A blood mimicking fluid (BMF) has been developed for the acoustic and thermal characterizations of high intensity focused ultrasound (HIFU) ablation devices. The BMF is based on a degassed and de-ionized water solution dispersed with low density polyethylene microspheres, nylon particles, gellan gum, and glycerol. A broad range of physical parameters, including attenuation coefficient, speed of sound, viscosity, thermal conductivity, and diffusivity, were characterized as a function of temperature (2070°C). The nonlinear parameter BA and backscatter coefficient were also measured at room temperature. Importantly, the attenuation coefficient is linearly proportional to the frequency (28MHz) with a slope of about 0.2dBcm1MHz1 in the 2070°C range as in the case of human blood. Furthermore, sound speed and bloodlike backscattering indicate the usefulness of the BMF for ultrasound flow imaging and ultrasound-guided HIFU applications. Most of the other temperature-dependent physical parameters are also close to the reported values in human blood. These properties make it a unique HIFU research tool for developing standardized exposimetry techniques, validating numerical models, and determining the safety and efficacy of HIFU ablation devices.

1.
Bailey
,
M. R.
,
Khokhlova
,
V. A.
,
Sapozhnikov
,
O. A.
,
Kargl
,
S. G.
, and
Crum
,
L. A.
(
2003
). “
Physical mechanisms of the therapeutic effect of ultrasound
,”
Acoust. Phys.
49
,
437
464
.
2.
Boote
,
E. J.
, and
Zagzebski
,
J. A.
(
1988
). “
Performance tests of Doppler ultrasound equipment with a tissue and blood mimicking phantom
,”
J. Ultrasound Med.
7
,
137
47
.
3.
Chapelon
,
J. Y.
,
Ribault
,
M.
,
Vernier
,
F.
,
Souchon
,
R.
, and
Gelet
,
A.
(
1999
). “
Treatment of localized prostate cancer with transrectal high intensity focused ultrasound
,”
Eur. J. Ultrasound
9
,
31
38
.
4.
Chaussy
,
C.
, and
Thuroff
,
S.
(
2003
). “
The status of high-intensity focused ultrasound in the treatment of localized prostate cancer and the impact of a combined resection
,” Curr. Urol. Rep.
4
,
248
252
.
5.
Chen
,
L.
,
ter Haar
,
G.
,
Hill
,
C. R.
,
Dworkin
,
M.
,
Carnochan
,
P.
,
Young
,
H.
, and
Bensted
,
J. P.
(
1993
). “
Effect of blood perfusion on the ablation of liver parenchyma with high-intensity focused ultrasound
,”
Phys. Med. Biol.
38
,
1661
1673
.
6.
Coussios
,
C. C.
,
Farny
,
C. H.
,
ter Haar
,
G. R.
, and
Roy
,
R. A.
(
2007
). “
Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focused ultrasound
,”
Int. J. Hyperthermia
23
,
105
120
.
7.
Dong
,
F.
,
Madsen
,
E. L.
,
MacDonald
,
M. C.
, and
Zagzebski
,
J. A.
(
1999
). “
Nonlinearity parameter for tissue-mimicking materials
,”
Ultrasound Med. Biol.
25
,
831
838
.
8.
Duck
,
F. A.
(
1990
).
Physical Properties of Tissue: A Complete Reference Book
(
Academic
,
London
).
9.
Eckmann
,
D. M.
,
Bowers
,
S.
,
Stecker
,
M.
, and
Cheung
,
A.
(
2000
). “
Hematocrit, volume expander, temperature, and shear rate effects on blood viscosity
,”
Anesth. Analg. (Baltimore)
91
,
539
545
.
37.
Filonenko
,
E. A.
and
V. A.
Khokhlova
(
2001
). “
Effect of acoustic nonlinearity on heating of biological tissue by high-intensity focused ultrasound
,”
Acoust. Phys.
47
,
468
475
.
10.
Gammell
,
P. M.
,
Maruvada
,
S.
, and
Harris
,
G. R.
(
2007
). “
An ultrasonic time delay spectrometry (TDS) system employing digital processing
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
54
,
1036
1044
.
11.
Greaby
,
R.
,
Zderic
,
V.
, and
Vaezy
,
S.
(
2007
). “
Pulsatile flow phantom for ultrasound image-guided HIFU treatment of vascular injuries
,”
Ultrasound Med. Biol.
33
,
1269
1276
.
12.
Hariharan
,
P.
,
Myers
,
M. R.
, and
Banerjee
,
R. K.
(
2007
). “
HIFU procedures at moderate intensities—effect of large blood vessels
,”
Phys. Med. Biol.
52
,
3493
34513
.
13.
Harris
,
G. R.
,
Liu
,
Y.
,
Maruvada
,
S.
, and
Gammell
,
P. M.
(
2007
). “
Finite amplitude method for measurement of nonlinearity parameter BA using plane-wave tone bursts
,”
Proc.-IEEE Ultrason. Symp.
.
14.
Huang
,
J.
,
Holt
,
R. G.
,
Cleveland
,
R. O.
, and
Roy
,
R. A.
(
2004
). “
Experimental validation of a tractable numerical model for focused ultrasound heating in flow-through tissue phantoms
,”
J. Acoust. Soc. Am.
116
,
2451
2458
.
15.
Hynynen
,
K.
,
Pomeroy
,
P.
,
Smith
,
D. N.
,
Huber
,
P. E.
,
McDannold
,
N. J.
,
Kettenbach
,
J.
,
Baum
,
J.
,
Singer
,
S.
, and
Jolesz
,
F.
(
2001
). “
MR imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study
,”
Radiology
219
,
176
185
.
16.
Ichihara
,
M.
,
Sasaki
,
K.
,
Umemura
,
S.
,
Kushima
,
M.
, and
Okai
,
T.
(
2007
). “
Blood flow occlusion via ultrasound image-guided high-intensity focused ultrasound and its effect on tissue perfusion
,”
Ultrasound Med. Biol.
33
,
452
459
.
36.
Jolesz
,
F. A.
,
K.
Hynynen
,
N.
McDannold
,
D.
Freundlich
, and
D.
Kopelman
(
2004
). “
Noninvasive thermal ablation of hepatocellular carcinoma by using magnetic resonance imaging-guided focused ultrasound
,”
Gastroenterology
127
,
S242
S247
.
17.
Kennedy
,
J. E.
,
ter Haar
,
G. R.
,
Wu
,
F.
,
Gleeson
,
F. V.
,
Roberts
,
I. S.
,
Middleton
,
M. R.
, and
Cranston
,
D.
(
2004
). “
Contrast-enhanced ultrasound assessment of tissue response to high-intensity focused ultrasound
,”
Ultrasound Med. Biol.
30
,
851
854
.
18.
King
,
R. L.
,
Herman
,
B. A.
,
Maruvada
,
S.
,
Wear
,
K. A.
, and
Harris
,
G. R.
(
2007
). “
Development of a HIFU phantom
,”
Proceedings: Sixth International Symposium on Therapeutic Ultrasound
, edited by
C. C.
Coussios
and
G.
ter Haar
(
American Institute of Physics
,
New York
), pp.
351
356
.
19.
Law
,
W. K.
,
Dunn
,
F.
, and
Frizzell
,
L. A.
(
1984
). “
The nonlinearity parameter BA of biological media
,”
Proceedings of the Tenth Symposium on Nonlinear Acoustics
(unpublished), pp.
222
224
.
20.
Lide
,
D. R.
(
2004
).
CRC Handbook Chemistry and Physics
(
CRC
,
Boca Raton, FL
).
21.
Madsen
,
E. L.
,
Dong
,
F.
,
Frank
,
G. R.
,
Garra
,
B. S.
,
Wear
,
K. A.
,
Wilson
,
T.
,
Zagzebski
,
J. A.
,
Miller
,
H. L.
,
Shung
,
K. K.
,
Wang
,
S. H.
,
Feleppa
,
E. J.
,
Liu
,
T.
,
O’Brien
,
W. D.
,
Topp
,
K. A.
,
Sanghvi
,
N. T.
,
Zaitsev
,
A. V.
,
Hall
,
T. J.
,
Fowlkes
,
J. B.
,
Kripfgans
,
O. D.
, and
Miller
,
J. G.
(
1999
). “
Interlaboratory comparison of ultrasonic backscatter, attenuation, and speed measurements
,”
J. Ultrasound Med.
18
,
615
631
.
22.
Marczak
,
W.
(
1997
). “
Water as a standard in the measurements of speed of sound in liquids
,”
J. Acoust. Soc. Am.
102
,
2776
2779
.
23.
Martin
,
R. W.
,
Vaezy
,
S.
,
Kaczkowski
,
P. J.
,
Keilman
,
G.
,
Carter
,
S.
,
Caps
,
M.
,
Beach
,
K.
,
Plett
,
M.
, and
Crum
,
L. A.
(
1999
). “
Hemostasis of punctured vessels using Doppler-guided high-intensity ultrasound
,”
Ultrasound Med. Biol.
25
,
985
990
.
24.
McDannold
,
N.
,
Tempany
,
M.
,
Fennessy
,
M.
,
So
,
J.
,
Rybicki
,
J.
,
Stewart
,
A.
,
Jolesz
,
A.
, and
Hynynen
,
K.
(
2006
). “
Uterine leiomyomas: MR imaging-based thermometry and thermal dosimetry during focused ultrasound thermal ablation
,”
Radiology
240
,
263
272
.
25.
Nassiri
,
D. K.
, and
Hill
,
C. R.
(
1986
). “
The differential and total bulk acoustic scattering cross sections of some human and animal tissues
,”
J. Acoust. Soc. Am.
79
,
2034
2047
.
26.
Oates
,
C. P.
(
1991
). “
Towards an ideal blood analogue for Doppler ultrasound phantoms
,”
Phys. Med. Biol.
36
,
1433
1442
.
27.
O’Neill
,
T. P.
,
Winkler
,
A. J.
, and
Wu
,
J.
(
1994
). “
Ultrasound heating in a tissue-bone phantom
,”
Ultrasound Med. Biol.
20
,
579
588
.
28.
Preston
,
R. C.
,
Shaw
,
A.
, and
Zeqiri
,
B.
(
1991
). “
Prediction of in situ exposure to ultrasound: An acoustical attenuation method
,”
Ultrasound Med. Biol.
17
,
317
332
.
29.
Ramnarine
,
K. V.
,
Nassiri
,
D. K.
,
Hoskins
,
P. R.
, and
Lubbers
,
J.
(
1998
). “
Validation of a new blood mimicking fluid for use in Doppler flow test objects
,”
Ultrasound Med. Biol.
24
,
451
459
.
30.
Samavat
,
H.
, and
Evans
,
J. A.
(
2006
). “
An ideal blood mimicking fluid for Doppler ultrasound phantoms
,”
J. Math. Phys.
31
,
275
278
.
31.
ter Haar
,
G. R.
, and
Coussios
,
C. C.
(
2007
). “
High intensity focused ultrasound: Physical principles and devices
,”
Int. J. Hyperthermia
23
,
89
104
.
32.
Vaezy
,
S.
, and
Zderic
,
V.
(
2007
). “
Hemorrhage control using high intensity focused ultrasound
,”
Int. J. Hyperthermia
23
,
203
211
.
33.
Wear
,
K. A.
(
1999
). “
Frequency dependence of ultrasonic backscatter from human trabecular bone: theory and experiment
,”
J. Acoust. Soc. Am.
106
,
3659
3664
.
34.
Wiart
,
M.
,
Curiel
,
L.
,
Gelet
,
A.
,
Lyonnet
,
D.
,
Chapelon
,
J. Y.
, and
Rouvière
,
O.
(
2007
). “
Influence of perfusion on high-intensity focused ultrasound prostate ablation: A first-pass MRI study
,”
Magn. Reson. Med.
58
,
119
127
.
35.
Yuan
,
Y.
, and
Shung
,
K.
(
1988
). “
Ultrasonic backscatter from flowing whole blood II: dependence on frequency and fibrinogen concentration
,”
J. Acoust. Soc. Am.
84
,
1195
1200
.
You do not currently have access to this content.