The present paper deals with the inverse scattering problem involving macroscopically inhomogeneous rigid frame porous media. It consists of the recovery, from acoustic measurements, of the profiles of spatially varying material parameters by means of an optimization approach. The resolution is based on the modeling of acoustic wave propagation in macroscopically inhomogeneous rigid frame porous materials, which was recently derived from the generalized Biot’s theory. In practice, the inverse problem is solved by minimizing an objective function defined in the least-square sense by the comparison of the calculated reflection (and transmission) coefficient(s) with the measured or synthetic one(s), affected or not by additive Gaussian noise. From an initial guess, the profiles of the x-dependent material parameters are reconstructed iteratively with the help of a standard conjugate gradient method. The convergence rate of the latter and the accuracy of the reconstructions are improved by the availability of an analytical gradient.

1.
M. A.
Biot
, “
Theory of propagation of elastic waves in a fluid-saturated porous solid - I. low frequency range and II. high frequency range
.”
J. Acoust. Soc. Am.
28
,
168
178
(
1956
); and
M. A.
Biot
, “
Theory of propagation of elastic waves in a fluid-saturated porous solid - I. low frequency range and II. high frequency range
.”
J. Acoust. Soc. Am.
28
,
179
191
(
1956
).
2.
M. A.
Biot
and
D. G.
Willis
, “
The elastic coefficients of the theory of consolidation
.”
J. Appl. Mech.
24
,
594
601
(
1957
).
3.
M. A.
Biot
, “
Mechanics of deformation and acoustic propagation in porous media
.”
J. Appl. Phys.
33
,
1482
1498
(
1962
).
4.
M. A.
Biot
, “
Generalized theory of acoustic propagation in porous dissipative media
.”
J. Acoust. Soc. Am.
34
,
1254
1264
(
1962
).
5.
D. L.
Johnson
,
J.
Koplik
, and
R.
Dashen
, “
Theory of dynamic permeability and tortuosity in fluid-saturated porous media
.”
J. Fluid Mech.
176
,
379
402
(
1987
).
6.
Y.
Champoux
and
J. F.
Allard
, “
Dynamic tortuosity and bulk modulus in air-saturated porous media
.”
J. Appl. Phys.
70
,
1975
1979
(
1991
).
7.
J. F.
Allard
,
Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials
(
Chapman and Hall
, London,
1993
).
8.
K.
Attenborough
, “
Acoustical characteristics of porous materials
.”
Phys. Rep.
82
,
179
227
(
1982
).
9.
L.
De Ryck
,
J. P.
Groby
,
P.
Leclaire
,
W.
Lauriks
,
A.
Wirgin
,
Z. E. A.
Fellah
, and
C.
Depollier
, “
Acoustic wave propagation in a macroscopically inhomogeneous porous medium saturated by a fluid
.”
Appl. Phys. Lett.
90
,
181901
(
2007
).
10.
L.
De Ryck
,
W.
Lauriks
,
Z. E. A.
Fellah
,
A.
Wirgin
,
J. P.
Groby
,
P.
Leclaire
, and
C.
Depollier
, “
Acoustic wave propagation and internal fields in rigid frame macroscopically inhomogeneous porous media
.”
J. Appl. Phys.
102
,
024910
(
2007
).
11.
P.
Leclaire
,
L.
Kelders
,
W.
Lauriks
,
N. R.
Brown
,
M.
Melon
, and
B.
Castagnède
, “
Determination of the viscous and thermal characteristic lengths of plastic foams by ultrasonic measurements in helium and air
.”
J. Appl. Phys.
80
,
2009
2012
(
1996
).
12.
J. P.
Groby
,
L.
De Ryck
,
P.
Leclaire
,
A.
Wirgin
,
W.
Lauriks
,
R. P.
Gilbert
, and
Y. S.
Xu
, “
Use of specific Green’s functions for solving direct problems involving a heterogeneous rigid frame porous medium slab solicited by acoustic waves
.”
Math. Methods Appl. Sci.
30
,
91
122
(
2007
).
13.
O.
Forslund
and
S.
He
, “
Electomagnetic scattering from an inhomogeneous grating using a wave splitting approach
,”
Prog. Electromagn. Waves
19
,
147
171
(
1998
).
14.
L. L.
Beranek
, “
Acoustic impedance of porous materials
,”
J. Acoust. Soc. Am.
13
,
248
260
(
1942
).
15.
R. L.
Brown
and
R. H.
Bolt
, “
The measurement of flow resistance of porous acoustic materials
,”
J. Acoust. Soc. Am.
13
,
337
344
(
1942
).
16.
J.-F.
Allard
,
B.
Castagnede
,
M.
Henry
, and
W.
Lauriks
, “
Evaluation of tortuosity in acoustic porous materials saturated by air
,”
Rev. Sci. Instrum.
65
,
754
755
(
1994
).
17.
N. R.
Brown
,
M.
Melon
,
B.
Castagnede
,
V.
Montembault
,
W.
Lauriks
, and
P.
Leclaire
, “
Evaluation of the viscous characteristic length of air-saturated porous materials from the ultrasonic dispersion curve
,”
C. R. Acad. Sci. URSS
322
,
121
127
(
1996
).
18.
Z. E. A.
Fellah
,
S.
Berger
,
W.
Lauriks
,
C.
Depollier
,
C.
Aristegui
, and
J-Y.
Chapelon
, “
Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence
,”
J. Acoust. Soc. Am.
114
,
2424
2432
(
2003
).
19.
O.
Umnova
,
K.
Attenborough
,
H. C.
Shin
, and
A.
Cummings
, “
Deduction of tortuosity and porosity from reflection and transmission measurements on thick samples of porous materials
,”
Appl. Acoust.
66
,
607
624
(
2005
).
20.
Z. E. A.
Fellah
,
C.
Depollier
,
S.
Berger
,
W.
Lauriks
,
C.
Aristegui
,
P.
Trompette
, and
J-Y.
Chapelon
, “
Determination of transport parameters in air-saturated porous materials via reflected ultrasonic waves
,”
J. Acoust. Soc. Am.
114
,
2561
2569
(
2003
).
21.
G.
Kristensson
and
R. J.
Krueger
, “
Direct and inverse scattering in the time domain for a dissipative wave equation. i. scattering operators and ii. simultaneous reconstruction of dissipation and phase velocity profiles
,”
J. Math. Phys.
27
,
1667
1682
and
G.
Kristensson
and
R. J.
Krueger
, “
Direct and inverse scattering in the time domain for a dissipative wave equation. i. scattering operators and ii. simultaneous reconstruction of dissipation and phase velocity profiles
,”
J. Math. Phys.
27
,
1683
1693
(
1986
).
22.
G.
Kristensson
and
R. J.
Krueger
, “
Direct and inverse scattering in the time domain for a dissipative wave equation. iii. scattering operators in the presence of a phase velocity mismatch
,”
J. Math. Phys.
28
,
360
370
(
1987
).
23.
G.
Kristensson
and
R. J.
Krueger
, “
Direct and inverse scattering in the time domain for a dissipative wave equation. iv. use of phase velocity mismatches to simplify inversions
,”
Inverse Probl.
5
,
375
388
(
1989
).
24.
J. P.
Corones
,
M. E.
Davison
, and
R. J.
Krueger
, “
Direct and inverse scattering in the time domain via invariant imbedding equations
,”
J. Acoust. Soc. Am.
74
,
1535
1541
(
1983
).
25.
M.
Gustafsson
and
S.
He
, “
An optimization approach to multi-dimensional time domain acoustic inverse problems
,”
J. Acoust. Soc. Am.
108
,
1548
1556
(
2000
).
26.
D.
Lesselier
and
W.
Tabbara
, “
Problèmes unidimensionnels de diffraction inverse en acoustique et électromagnétisme. etude bibliographique (Unidimensional inverse scattering problems in acoustic and electromagnetism. Bibliographical study)
,”
J. Acoust.
1
,
363
384
(
1988
).
27.
M.
Norgren
and
S.
He
, “
An optimization approach to the frequency-domain inverse problem for a nonuniform lcrg transmission line
,”
IEEE Trans. Microwave Theory Tech.
44
,
1503
1507
(
1996
).
28.
C.
MacKay
,
D.
Hayward
,
S.
McKee
,
A. J.
Mulholland
, and
R.
A. Pethrick
, “
An inverse problem of reconstructing the electrical and geometrical parameters characterizing airframe structures and connector interfaces
,”
Inverse Probl. Eng.
15
,
177
190
(
2007
).
29.
A.
Wirgin
, The Inverse Crime. Available at http://hal.archives-ouvertes.fr/hal-00001084/fr/, last viewed online on 04/03/2008.
30.
R. J.
Krueger
and
L.
Ochs
, “
A Green’s function approach to the determination of internal fields
,”
Wave Motion
11
,
525
543
(
1989
).
31.
J.
le Rond d'Alembert
,
Opuscules Mathématiques ou Mémoires sur Différens Sujets de Géométrie, de Méchanique, d’Optique, d’Astronomie (Mathematical Opus or Manuscripts on Several Subjects About Geometry, Mechanics, Optics and Astronomy)
(
Chez David
, Paris,
1761
), pp.
1761
1780
. Available at http://gallica.bnf.fr/ark:/12148/bpt6k62394p/ last viewed online on 7/31/08.
32.
S.
He
,
S.
Ström
, and
V. H.
Weston
,
Time Domain Wave-Splittings and Inverse Problems
(
Oxford University Press
, Oxford,
1998
).
33.
J. R.
Shewchuk
, An Introduction to the Conjugate Gradient Method Without the Agonizing Pain. Available at www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf, last viewed online on 04/04/2008.
34.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in Fortran 77
, 2nd ed. (
Cambridge University Press
, Cambridge,
1992
).
35.
E.
Polak
,
Computational Methods in Optimization
(
Academic
, New York, London,
1971
).
36.
J. A.
Nelder
and
R.
Mead
, “
A simplex method for function minimization
,”
Comput. J.
7
,
308
313
(
1965
).
37.
A. E.
Yagle
, “
A layer stripping fast algorithm for reconstructing a lossy layered medium
,”
J. Acoust. Soc. Am.
82
,
927
936
(
1987
).
38.
K. P.
Bube
and
R.
Burridge
, “
The one-dimensional inverse problem of reflection seismology
,”
SIAM Rev.
25
,
497
559
(
1983
).
39.
T. M.
Habashy
and
A.
Abubakar
, “
A general framework for constraint minimization for the inversion of electromagnetic measurements
,”
Electromagn. Waves
46
,
265
312
(
2004
).
40.
A.
Franchois
and
C.
Pichot
, “
Microwave imaging-complex permittivity reconstruction with a Levenberg-Marquardt method
,”
IEEE Trans. Antennas Propag.
45
,
203
215
(
1997
).
You do not currently have access to this content.