Melamine wedges are often used as acoustic lining material for anechoic chambers. It was proposed here to study the effects of the mounting conditions on the acoustic properties of the melamine wedges used in the large anechoic chamber at the LMA. The results of the impedance tube measurements carried out show that the mounting conditions must be taken into account when assessing the quality of an acoustic lining. As it can be difficult to simulate these mounting conditions in impedance tube experiments, a numerical method was developed, which can be used to complete the experiments or for parametric studies. By combining the finite and the boundary element method, it is possible to investigate acoustic linings with almost no restrictions as to the geometry, material behavior, or mounting conditions. The numerical method presented here was used to study the acoustic properties of the acoustic lining installed in the anechoic chamber at the LMA. Further experiments showed that the behavior of the melamine foam is anisotropic. Numerical simulations showed that this anisotropy can be used to advantage when designing an acoustic lining.

1.
L. L.
Beranek
and
J. H. P.
Sleeper
, “
The design of anechoic sound chambers
,”
J. Acoust. Soc. Am.
18
(
1
),
246
246
(
1946
).
2.
K. A.
Cunefare
,
V. B.
Biesel
,
J.
Tran
,
R.
Rye
,
A.
Graf
,
M.
Holdhusen
, and
A.-M.
Albanese
, “
Anechoic chamber qualification: Traverse method, inverse square law analysis method, and nature of test signal
,”
J. Acoust. Soc. Am.
113
,
881
892
(
2003
).
3.
H. C.
Hardy
,
F. G.
Tyzzer
, and
H. H.
Hall
, “
Performance of the anechoic room of the parmly sound laboratory
,”
J. Acoust. Soc. Am.
19
,
992
995
(
1947
).
4.
G. R.
Hruska
and
W.
Koidan
, “
Evaluation of the large anechoic chamber at the national bureau of standards
,”
J. Acoust. Soc. Am.
58
,
S78
S78
(
1975
).
5.
W.
Koidan
and
G. R.
Hruska
, “
Acoustical properties of the national bureau of standards anechoic chamber
,”
J. Acoust. Soc. Am.
64
,
508
516
(
1978
).
6.
J.-Q.
Wang
and
B.
Cai
, “
Calculation of free-field deviation in an anechoic room
,”
J. Acoust. Soc. Am.
85
,
1206
1212
(
1989
).
7.
W.
Koidan
,
G. R.
Hruska
, and
M. A.
Pickett
, “
Wedge design for national bureau of standards anechoic chamber
,”
J. Acoust. Soc. Am.
52
,
1071
1076
(
1972
).
8.
G. E.
Warnaka
, “
A different look at the anechoic wedge
,”
J. Acoust. Soc. Am.
75
,
855
858
(
1984
).
9.
J.
Xu
,
J. M.
Buchholz
, and
F. R.
Fricke
, “
Flat-walled multilayered anechoic linings: Optimization and application
,”
J. Acoust. Soc. Am.
118
,
3104
3109
(
2005
).
10.
X.
Olny
and
C.
Boutin
, “
Acoustic wave propagation in double porosity media
,”
J. Acoust. Soc. Am.
114
,
73
89
(
2003
).
11.
F.
Sgard
,
X.
Olny
,
N.
Atalla
, and
F.
Castel
, “
On the use of perforations to improve the sound absorption of porous materials
,”
Appl. Acoust.
66
,
625
651
(
2005
).
12.
V.
Easwaran
and
M. L.
Munjal
, “
Finite element analysis of wedges used in anechoic chambers
,”
J. Sound Vib.
160
,
333
350
(
1993
).
13.
Y. J.
Kang
and
J. S.
Bolton
, “
Finite element models for sound transmission through foam wedges and foam layers having spatially graded properties
,”
J. Acoust. Soc. Am.
98
,
2976
2976
(
1995
).
14.
Y. J.
Kang
and
J. S.
Bolton
, “
Sound transmission through elastic porous wedges and foam layers having spatially graded properties
,”
J. Acoust. Soc. Am.
102
,
3319
3332
(
1997
).
15.
C.-N.
Wang
and
M.-K.
Tang
, “
Boundary element evaluation on the performance of sound absorbing wedges for anechoic chambers
,”
Eng. Anal. Boundary Elem.
18
,
103
110
(
1996
).
16.
T.
Kar
and
M.
Munjal
, “
Plane wave analysis of acoustic wedges using the boundary-condition-transfer algorithm
,”
Appl. Acoust.
67
,
901
917
(
2006
).
17.
D.
Pilon
,
R.
Panneton
, and
F.
Sgard
, “
Behavioral criterion quantifying the edge-constrained effects on foams in the standing wave tube
,”
J. Acoust. Soc. Am.
114
,
1980
1987
(
2003
).
18.
ISO 10534-2:1998 Acoustics-Determination of sound absorption coefficient and impedance in impedance tubes—Part 2: Transfer-function method.
19.
J. Y.
Chung
and
D. A.
Blaser
, “
Transfer function method of measuring in-duct acoustic properties. i. theory
,”
J. Acoust. Soc. Am.
68
,
907
913
(
1980
).
20.
J. Y.
Chung
and
D. A.
Blaser
, “
Transfer function method of measuring in-duct acoustic properties. ii. experiment
,”
J. Acoust. Soc. Am.
68
,
914
921
(
1980
).
21.
J.-F.
Allard
,
Propagation of Sound in Porous Media. Modelling Sound Absorbing Materials
(
Elsvier
,
London
,
1993
).
22.
M.
Melon
,
C.
Langrenne
,
D.
Rousseau
,
B.
Roux
, and
P.
Herzog
, “
Comparison of four subwoofer measurement techniques
,” In
120th AES Convention
, number 6833,
Paris (France)
,
2006
.
23.
S.
Schneider
and
C.
Kern
, “
Acoustical behavior of the large anechoic chamber at the Laboratoire de Mécanique et d’Acoustique in the low frequency range
,”
Acust. Acta Acust.
94
,
141
147
(
2008
).
24.
N.
Dauchez
, “
Étude vibroacoustique des matériaux poreux par éléments finis (Vibroacoustic analysis of poroelastic materials using the finite element method)
,” Ph.D. thesis,
Université de Sherbrooke
,
1999
.
25.
D.
Pilon
and
R.
Panneton
, “
Effects of circumferential air gaps on the measurement of the absorption coefficient of poroelastic materials
,”
J. Acoust. Soc. Am.
112
,
2383
2383
(
2002
).
26.
B. H.
Song
,
J. S.
Bolton
, and
Y. J.
Kang
, “
Effect of circumferential edge constraint on the acoustical properties of glass fiber materials
,”
J. Acoust. Soc. Am.
110
,
2902
2916
(
2001
).
27.
M. A.
Biot
, “
Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range
,”
J. Acoust. Soc. Am.
28
,
168
178
(
1956
).
28.
M. A.
Biot
, “
Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range
,”
J. Acoust. Soc. Am.
28
,
179
191
(
1956
).
29.
N.
Atalla
,
R.
Panneton
, and
P.
Deberge
, “
A mixed pressure-displacement formulation for poroelastic materials
,”
J. Acoust. Soc. Am.
104
,
1444
1542
(
1998
).
30.
J.
Rahola
, “
Diagonal forms of the translation operators in the fast multipole algorithm for scattering problems
,”
BIT
60
,
333
358
(
1996
).
31.
V.
Rokhlin
, “
Diagonal forms of the translation operators for the Helmholtz equation in three dimensions
,”
Appl. Comput. Harmon. Anal.
1
,
82
93
(
1993
).
32.
W. C.
Chew
,
J. M.
Jin
,
C. C.
Lu
,
E.
Michelssen
, and
J. M.
Song
, “
Fast solution methods in electromagnetics
,”
IEEE Trans. Antennas Propag.
45
,
533
543
(
1997
).
33.
E.
Darve
, “
The fast multipole method I: Error analysis and asymptotic complexity
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
38
,
98
128
(
2001
).
34.
J.
Song
,
C.-C.
Lu
, and
W. C.
Chew
, “
Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects
,”
IEEE Trans. Antennas Propag.
45
,
1488
1493
(
1997
).
35.
S.
Schneider
, “
FE/FMBE-coupling to model fluid-structure interaction
,”
Int. J. Numer. Methods Eng.
(to be published).
36.
L.
Jaouen
, “
Contribution à la caractérisation mécanique de matériaux poro-visco-élastiques en vibro-acoustique (Contribution to the mechanical characterization of poro-visco-elastic materials in virbo-acoustics)
,” PhD thesis,
Université de Sherbrooke
,
2003
.
37.
M.
Melon
,
E.
Mariez
,
C.
Ayrault
, and
S.
Sahraoui
, “
Acoustical and mechanical characterization of anisotropic open-cell foams
,”
J. Acoust. Soc. Am.
104
,
2622
2627
(
1998
).
You do not currently have access to this content.