Passive time reversal has aroused considerable interest in underwater communications as a computationally inexpensive means of mitigating the intersymbol interference introduced by the channel using a receiver array. In this paper the basic technique is extended by adaptively weighting sensor contributions to partially compensate for degraded focusing due to mismatch between the assumed and actual medium impulse responses. Two algorithms are proposed, one of which restores constructive interference between sensors, and the other one minimizes the output residual as in widely used equalization schemes. These are compared with plain time reversal and variants that employ postequalization and channel tracking. They are shown to improve the residual error and temporal stability of basic time reversal with very little added complexity. Results are presented for data collected in a passive time-reversal experiment that was conducted during the MREA’04 sea trial. In that experiment a single acoustic projector generated a 24-PSK (phase-shift keyed) stream at 200400 baud, modulated at 3.6kHz, and received at a range of about 2km on a sparse vertical array with eight hydrophones. The data were found to exhibit significant Doppler scaling, and a resampling-based preprocessing method is also proposed here to compensate for that scaling.

1.
D. R.
Jackson
and
D. R.
Dowling
, “
Phase conjugation in underwater acoustics
,”
J. Acoust. Soc. Am.
89
,
171
181
(
1991
).
2.
W. A.
Kuperman
,
W. S.
Hodgkiss
,
H. C.
Song
,
T.
Akal
,
C.
Ferla
, and
D. R.
Jackson
, “
Phase conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror
,”
J. Acoust. Soc. Am.
103
,
25
40
(
1998
).
3.
D. R.
Dowling
, “
Acoustic pulse compression using passive phase-conjugate processing
,”
J. Acoust. Soc. Am.
95
,
1450
1458
(
1994
).
4.
M.
Stojanovic
,
J. A.
Catipovic
, and
J. G.
Proakis
, “
Reduced-complexity spatial and temporal processing of underwater acoustic communication signals
,”
J. Acoust. Soc. Am.
98
,
961
972
(
1995
).
5.
M.
Fink
, “
Time-reversed acoustics
,”
Sci. Am.
281
(
5
),
91
97
(
1999
).
6.
M.
Stojanovic
, “
Retrofocusing techniques for high rate acoustic communications
,”
J. Acoust. Soc. Am.
117
,
1173
1185
(
2005
).
7.
G. F.
Edelmann
,
T.
Akal
,
W. S.
Hodgkiss
,
S.
Kim
,
W. A.
Kuperman
, and
H. C.
Song
, “
An initial demonstration of underwater acoustic communication using time reversal
,”
IEEE J. Ocean. Eng.
27
,
602
609
(
2002
).
8.
G. F.
Edelmann
,
H. C.
Song
,
S.
Kim
,
W. S.
Hodgkiss
,
W. A.
Kuperman
, and
T.
Akal
, “
Underwater acoustic communications using time reversal
,”
IEEE J. Ocean. Eng.
30
,
852
864
(
2005
).
9.
D.
Rouseff
,
D. R.
Jackson
,
W. L. J.
Fox
,
C. D.
Jones
,
J. A.
Ritcey
, and
D. R.
Dowling
, “
Underwater acoustic communication by passive-phase conjugation: Theory and experimental results
,”
IEEE J. Ocean. Eng.
26
,
821
831
(
2001
).
10.
A.
Silva
,
S.
Jesus
,
J.
Gomes
, and
V.
Barroso
, “
Underwater acoustic communication using a ‘virtual’ electronic time-reversal mirror approach
,”
Proceedings of the V European Conference on Underwater Acoustics (ECUA’00)
, edited by
P.
Chevret
and
M. E.
Zakharia
,
Lyon, France
,
2000
.
11.
H. C.
Song
,
W. S.
Hodgkiss
,
W. A.
Kuperman
,
W. J.
Higley
,
K.
Raghukumar
,
T.
Akal
, and
M.
Stevenson
, “
Spatial diversity in passive time reversal communications
,”
J. Acoust. Soc. Am.
120
,
2067
2076
(
2006
).
12.
H. C.
Song
,
W. S.
Hodgkiss
,
W. A.
Kuperman
,
M.
Stevenson
, and
T.
Akal
, “
Improvement of time-reversal communications using adaptive channel equalizers
,”
IEEE J. Ocean. Eng.
31
,
487
496
(
2006
).
13.
D.
Rouseff
, “
Intersymbol interference in underwater acoustic communications using time-reversal signal processing
,”
J. Acoust. Soc. Am.
117
,
780
788
(
2005
).
14.
P.
Hursky
,
M. B.
Porter
,
M.
Siderius
, and
V. K.
McDonald
, “
Point-to-point underwater acoustic communications using spread-spectrum passive phase conjugation
,”
J. Acoust. Soc. Am.
120
,
247
257
(
2006
).
15.
H. C.
Song
,
P.
Roux
,
W. S.
Hodgkiss
,
W. A.
Kuperman
,
T.
Akal
, and
M.
Stevenson
, “
Multiple-input-multiple-output coherent time reversal communications in a shallow-water acoustic channel
,”
IEEE J. Ocean. Eng.
31
,
170
178
(
2006
).
16.
J.
Gomes
and
V.
Barroso
, “
Asymmetric underwater acoustic communication using a time-reversal mirror
,”
Proceedings of MTS∕IEEE OCEANS’00
,
Providence, RI
,
2000
, Vol.
3
,
1847
1851
.
17.
J. A.
Flynn
,
J. A.
Ritcey
,
D.
Rouseff
, and
W. L. J.
Fox
, “
Multichannel equalization by decision-directed passive phase conjugation: Experimental results
,”
IEEE J. Ocean. Eng.
29
,
824
836
(
2004
).
18.
J. G.
Proakis
,
Digital Communications
, 4th ed. (
McGraw-Hill
,
New York
,
2000
).
19.
T. C.
Yang
, “
Temporal resolution of time-reversal and passive phase-conjugation processing
,”
IEEE J. Ocean. Eng.
28
,
229
245
(
2003
).
20.
L. J.
Ziomek
,
Fundamentals of Acoustic Field Theory and Space-Time Signal Processing
(
CRC
,
Boca Raton, FL
,
1995
).
21.
H. C.
Song
,
W. A.
Kuperman
, and
W. S.
Hodgkiss
, “
A time-reversal mirror with variable range focusing
,”
J. Acoust. Soc. Am.
103
,
3234
3240
(
1998
).
22.
S.
Kim
,
W. A.
Kuperman
,
W. S.
Hodgkiss
,
H. C.
Song
,
G. F.
Edelmann
, and
T.
Akal
, “
Robust time reversal focusing in the ocean
,”
J. Acoust. Soc. Am.
114
,
145
157
(
2003
).
23.
H.
Cox
, “
Navy applications of high frequency acoustics
,”
Proceedings of the High-Frequency Ocean Acoustics Conference (HFOAC’04)
,
La Jolla, CA
,
2004
, Vol.
728
,
449
455
.
24.
P.
Balaban
and
J.
Salz
, “
Optimum diversity combining and equalization in digital data transmission with applications to cellular mobile radio—Part I: Theoretical considerations
,”
IEEE Trans. Commun.
40
,
885
894
(
1992
).
25.
M.
Stojanovic
,
J. A.
Catipovic
, and
J. G.
Proakis
, “
Adaptive multichannel combining and equalization for underwater acoustic communications
,”
J. Acoust. Soc. Am.
94
,
1621
1631
(
1993
).
26.
A.
Parvulescu
, “
Matched-signal (“MESS”) processing by the ocean
,”
J. Acoust. Soc. Am.
98
,
943
960
(
1995
).
27.
M. B.
Porter
and
H. P.
Bucker
, “
Gaussian beam tracing for computing ocean acoustic fields
,”
J. Acoust. Soc. Am.
82
,
1349
1359
(
1987
).
28.
O.
Shalvi
and
E.
Weinstein
, “
New criteria for blind deconvolution of nonminimum phase systems (channels)
,”
IEEE Trans. Inf. Theory
36
,
312
321
(
1990
).
29.
J.
Gomes
,
A.
Silva
, and
S.
Jesus
, “
Joint passive time reversal and multichannel equalization for underwater communications
,”
Proceedings of MTS∕IEEE OCEANS’06
,
Boston, MA
,
2006
,
1161
1166
.
30.
A. H.
Sayed
,
Fundamentals of Adaptive Filtering
(
Wiley-IEEE
,
New York
,
2003
).
31.
S.
Jesus
,
C.
Soares
,
P.
Felisberto
,
A.
Silva
,
L.
Farinha
, and
C.
Martins
, “
Acoustic maritime rapid environmental assessment during the MREA’04 sea trial
,” Technical Report No. 02∕05,
Centro de Investigacao Tecnologica do Algarve, Universidade do Algarve
,
2005
, URL: ftp://ftp.ualg.pt/users/sjesus/pubs/B21.pdf, accessed on 6∕28∕2008.
32.
S.
Ariyavisitakul
and
L. J.
Greenstein
, “
Reduced-complexity equalization techniques for broadband wireless channels
,”
IEEE J. Sel. Areas Commun.
15
,
5
15
(
1997
).
33.
J. C.
Preisig
, “
Performance analysis of adaptive equalization for coherent acoustic communications in the time-varying ocean environment
,”
J. Acoust. Soc. Am.
118
,
263
278
(
2002
).
34.
B. S.
Sharif
,
J.
Neasham
,
O. R.
Hinton
, and
A. E.
Adams
, “
A computationally efficient doppler compensation system for underwater acoustic communications
,”
IEEE J. Ocean. Eng.
25
,
52
61
(
2000
).
You do not currently have access to this content.