Cavities branching off the main vocal tract are ubiquitous in nonhumans. Mammalian air sacs exist in human relatives, including all four great apes, but only a substantially reduced version exists in humans. The present paper focuses on acoustical functions of the air sacs. The hypotheses are investigated on whether the air sacs affect amplitude of utterances and/or position of formants. A multilayer synthetic model of the vocal folds coupled with a vocal tract model was utilized. As an air sac model, four configurations were considered: open and closed uniform tube-like side branches, a rigid cavity, and an inflatable cavity. Results suggest that some air sac configurations can enhance the sound level. Furthermore, an air sac model introduces one or more additional resonance frequencies, shifting formants of the main vocal tract to some extent but not as strongly as previously suggested. In addition, dynamic range of vocalization can be extended by the air sacs. A new finding is also an increased variability of the vocal tract impedance, leading to strong nonlinear source-filter interaction effects. The experiments demonstrated that air-sac-like structures can destabilize the sound source. The results were validated by a transmission line computational model.

1.
Alipour
,
F.
, and
Scherer
,
R. C.
(
1997
). “
Effects of oscillation of a mechanical hemilarynx model on mean transglottal pressures and flows
,”
J. Acoust. Soc. Am.
110
,
1562
1569
.
2.
Bartels
,
P.
(
1905
). “
Über die Nebenräume der Kehlkopfhöhle
,”
Z. Morphol. Anthropol.
8
,
11
61
.
3.
Causse
,
R.
,
Kergomard
,
J.
, and
Lurton
,
X.
(
1984
). “
Input impedance of brass musical instruments
,”
J. Acoust. Soc. Am.
75
,
241
254
.
4.
Chan
,
R. W.
,
Titze
,
I. R.
, and
Titze
,
M. R.
(
1997
). “
Further studies of phonation threshold pressure in a physical model of the vocal fold mucosa
,”
J. Acoust. Soc. Am.
101
,
3722
3727
.
5.
Chan
,
R. W.
, and
Titze
,
I. R.
(
2006
). “
Dependence of phonation threshold pressure on vocal tract acoustics and vocal fold tissue mechanics
,”
J. Acoust. Soc. Am.
119
,
2351
2362
.
6.
Dang
,
J.
,
Honda
,
K.
, and
Suzuki
,
H.
(
1994
). “
Morphological and acoustical analysis of the nasal and paranasal cavities
,”
J. Acoust. Soc. Am.
96
,
2088
2100
.
7.
Dang
,
J.
, and
Honda
,
K.
(
1996
). “
Acoustic characteristic of the human paranasal sinuses derived from transmission characteristic measurement and morphological observation
,”
J. Acoust. Soc. Am.
100
,
3374
3383
.
8.
Dang
,
J.
, and
Honda
,
K.
(
1997
). “
Acoustic characteristics of the piriform fossain models and humans
,”
J. Acoust. Soc. Am.
101
,
456
465
.
9.
Dang
,
J.
,
Shadle
,
C. H.
,
Kawanishi
,
Y.
,
Honda
,
K.
, and
Suzuki
,
H.
(
1998
). “
An experimental study of the open end correction coefficient for side branches within an acoustic tube
,”
J. Acoust. Soc. Am.
104
,
1075
1084
.
9.
Fant
,
G.
(
1960
). “
Acoustic Theory of Speech Production
,” 2nd ed. (
Mouton
,
The Hague, The Netherlands
).
10.
Flanagan
,
J. L.
(
1972
).
Speech Analysis, Synthesis and Perception
(
Springer
,
Berlin
).
11.
Fletcher
,
N. H.
, and
Tarnopolsky
,
A.
(
1999
). “
Acoustics of the avian vocal tract
,”
J. Acoust. Soc. Am.
105
,
35
49
.
11.
Fletcher
,
N.
,
Riede
,
T.
,
Beckers
,
G. J. L.
, and
Suthers
,
R. A.
(
2004
). “
Vocal tract filtering and the ‘coo’ of doves
,”
J. Acoust. Soc. Am.
116
,
3750
3756
.
12.
Frey
,
R.
,
Gebler
,
A.
, and
Fritsch
,
G.
(
2006
). “
Arctic roars—laryngeal anatomy and vocalization of the muskox (Ovibus moschatus Zimmermann, 1780, Bovidae)
,”
J. Zool.
268
,
433
448
.
13.
Frey
,
R.
,
Gebler
,
A.
,
Fritsch
,
G.
,
Nygren
,
K.
, and
Weissengruber
,
G. E.
(
2007
). “
Nordic rattle—the hoarse phonation and the inflatable laryngeal air sac of reindeer (Rangifer tarandus)
,”
J. Anat.
210
,
131
159
.
14.
Gautier
,
J. P.
(
1971
). “
Etude morphologique et fonctionnelle des annexes extra-laryngées des cercopithecinae; liason avec les cris d’espacement
,”
Biol. Gabon.
7
,
229
267
.
15.
Haimoff
,
E. H.
(
1981
). “
Video analysis of Siamang (Hylobates syndactylus) songs
,”
Behaviour
76
,
128
151
.
16.
Hayama
,
S.
(
1970
). “
The Saccus larynges in Primates
,”
Journal of the Anthropological Society of Nippon.
78
,
274
298
.
17.
Hill
,
W. C. O.
and
Booth
,
A. H.
(
1957
). “
Voice and Larynx in African and Asian Colobidae
,”
J. Bombay Natural His. Soc.
54
,
309
321
.
18.
Hillowala
,
R. A.
, and
Lass
,
N. J.
(
1978
). “
Spectrographic analysis of air sac resonance in rhesus monkeys
,”
Am. J. Phys. Anthropol.
49
,
129
132
.
19.
Hirano
,
M.
, and
Kakita
,
Y.
(
1985
). “
Cover-body theory of vocal fold vibration
,” in
Speech Science: Physiological Aspects
, edited by
R.
Daniloff
(
College-Hill
,
San Diego, CA
), pp
1
46
.
20.
Hsiao
,
T.
,
Solomon
,
N. P.
,
Luschei
,
E. S.
,
Titze
,
I. R.
,
Kang
,
L.
,
Fu
,
T.
, and
Hsu
,
M.
(
1994
). “
Effect of subglottic pressure on fundamental frequency of the canine larynx with active muscle tensions
,”
Ann. Otol. Rhinol. Laryngol.
103
,
817
821
.
21.
Kurita
,
S.
,
Nagata
,
K.
, and
Hirano
,
M.
(
1983
). “
A. comparative study of the layer structure of the vocal fold
,” in
Vocal Fold Physiology: Contemporary Research and Clinical Issues
, edited by
D. M.
Bless
and
J. H.
Abbs
(
College-Hill
,
San Diego
), pp.
3
21
.
22.
Ishizaka
,
K.
,
Matsudaira
,
M.
, and
Kaneko
,
T.
(
1976
). “
Input acoustic-impedance measurement of the subglottal system
,”
J. Acoust. Soc. Am.
60
,
190
197
.
23.
Lieberman
,
P.
(
2006
). “
Limits on tongue deformation—Diana monkey formants and the impossible vocal tract shapes proposed by Riede et al. (2005)
,”
J. Hum. Evol.
50
,
219
221
.
24.
Neubauer
,
J.
,
Zhang
,
Z.
,
Miraghaie
,
R.
, and
Berry
,
D. A.
(
2007
). “
Coherent structures of the near field flow in a self-oscillating physical model of the vocal folds
,”
J. Acoust. Soc. Am.
121
,
1102
1118
.
25.
Nishimura
,
T.
,
Mikami
,
A.
,
Suzuki
,
J.
, and
Matsuzawa
,
T.
(
2007
). “
Development of the laryngeal air sac in chimpanzees
,”
International Journal of Primatology
28
,
483
492
.
26.
Ogura
,
Y.
(
1915
). “
Beitraege zur Kenntnis des Kehlsackes des Rentieres
,”
J. Coll. Agr. Tohoku Imp. University, Sapporo
6
,
151
155
.
27.
Rendall
,
D.
,
Owren
,
M. J.
, and
Rodman
,
P. S.
(
1998
). “
The role of vocal tract filtering in identity cueing in rhesus monkey (Macaca mulatta) vocalizations
,”
J. Acoust. Soc. Am.
103
,
602
614
.
26.
Riede
,
T.
,
Herzel
,
H.
,
Mehwald
,
D.
,
Seidner
,
W.
,
Trumler
,
E.
,
Böhme
,
G.
, and
Tembrock
,
G.
(
2000
). “
Nonlinear phenomena and their anatomical basis in the natural howling of a female dog-wolf breed
,”
J. Acoust. Soc. Am.
108
,
1435
1442
.
26.
Riede
,
T.
,
Arcadi
,
A. C.
, and
Owren
,
M.
(
2004b
). “
Nonlinear acoustics in pant hoots of common chimpanzees (Pan troglodytes): Frequency jumps, subharmonics, biphonation, and deterministic chaos
,”
Am. J. Primatol
64
,
277
291
.
26.
Riede
,
T.
and
Titze
,
I. R.
(
2008
). “
Vocal fold elasticity of the Rocky Mountain elk (Cervus elaphus nelsoni) — producing high fundamental frequency vocalization with a very long vocal fold
,”
J. Exp. Biol.
(in press).
28.
Riede
,
T.
,
Arcadi
,
A. C.
, and
Owren
,
M. J.
(
2007
). “
Nonlinear acoustics in pant hoots and screams of common chimpanzees (Pan troglodytes). Vocalizing at the edge
,”
J. Acoust. Soc. Am.
121
,
1758
1767
.
29.
Riede
,
T.
,
Beckers
,
G. J. L.
,
Blevins
,
W.
, and
Suthers
,
R. A.
(
2004
). “
Inflation of the esophagus and vocal tract filtering in ring doves
,”
J. Exp. Biol.
207
,
4025
4036
.
30.
Riede
,
T.
,
Bronson
,
E.
,
Hatzikirou
,
H.
, and
Zuberbühler
,
K.
(
2005
). “
Vocal production mechanisms in a non-human primate: Morphological data and a model
,”
J. Hum. Evol.
48
,
85
96
.
31.
Riede
,
T.
,
Bronson
,
E.
,
Hatzikirou
,
H.
, and
Zuberbühler
,
K.
(
2006
). “
Multiple discontinuities in nonhuman vocal tracts—A response to Lieberman (2006)
,”
J. Hum. Evol.
50
,
222
225
.
32.
Riede
,
T.
,
Suthers
,
R. A.
,
Fletcher
,
N.
, and
Blevins
,
W.
(
2006
). “
Songbirds tune their vocal tract to the fundamental frequency of their song
,”
Proc. Natl. Acad. Sci. U.S.A.
103
,
5543
5548
.
33.
Riede
,
T.
,
Wilden
,
I.
, and
Tembrock
,
G.
(
1997
). “
Subharmonics, biphonations, and frequency jumps-common components of mammalian vocalization or indicators for disorders
?”
Z. Säugetierkunde (Suppl. II)
62
,
198
203
.
33.
Scherer
,
R. C.
,
Shinwari
,
D.
,
DeWitt
,
K. J.
,
Zhang
,
C.
,
Kucinschi
,
B. R.
, and
Afjeh
,
A. A.
(
2001
). “
Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle
,”
J. Acoust. Soc. Am.
109
,
1616
1630
.
34.
Schneider
,
R.
(
1964
). “
Der Larynx der Säugetiere (The larynx of mammals)
,”
Handbuch der Zoologie
5
,
1
128
.
35.
Schön-Ybarra
,
M.
(
1995
). “
A comparative approach to the non-human primate vocal tract: Implications for sound production
,” in
Current Topics in Primate Vocal Communication
, edited by
E.
Zimmermann
,
J. D.
Newman
, and
U.
Juergens
(
Plenum
,
New York
), pp.
185
198
.
36.
Sohndi
,
M. M.
, and
Schroeter
,
J.
(
1987
). “
A hybrid time-frequency domain articulatory speech synthesizer
,”
IEEE Trans. Acoust., Speech, Signal Process.
35
,
955
967
.
37.
Starck
,
D.
, and
Schneider
,
R.
(
1960
). “
Respirationsorgane, Larynx
,”
Primatologia
3
,
423
587
.
40.
Tembrock
,
G.
(
1974
). “
Sound production in Hylobathes and Symphalangus
,” in
Gibbon and Siamang
, edited by
D.
Rumbaugh
(
Karger
,
Basel
), Vol.
3
, pp.
176
205
.
41.
Thomson
,
S. L.
,
Mongeau
,
L.
, and
Frankel
,
S. H.
(
2005
). “
Aerodynamic transfer of energy to the vocal folds
,”
J. Acoust. Soc. Am.
118
,
1689
1700
.
42.
Titze
,
I. R.
(
1988
). “
The physics of small-amplitude oscillation of the vocal folds
,”
J. Acoust. Soc. Am.
83
,
1536
1552
.
43.
Titze
,
I. R.
, and
Story
,
B. H.
(
1997
). “
Acoustic interaction of the voice source with the lower vocal tract
,”
J. Acoust. Soc. Am.
101
,
2234
2243
.
44.
Titze
,
I. R.
,
Schmidt
,
S. S.
, and
Titze
,
M. R.
(
1995
). “
Phonation threshold pressure in a physical model of the vocal fold mucosa
,”
J. Acoust. Soc. Am.
97
,
3080
3084
.
45.
Titze
,
I. R.
(
2004a
). “
A theoretical study of F0-F1 interaction with application to resonant speaking and singing voice
,”
J. Voice
18
,
292
298
.
46.
Titze
,
I. R.
(
2004b
). “
Theory of glottal airflow and source-filter interaction in speaking and singing
,”
Acta Acust.
90
,
641
648
.
47.
Titze
,
I. R.
(
2008
). “
Nonlinear source-filter coupling in phonation: Theory
,”
J. Acoust. Soc. Am.
123
,
2733
2749
.
48.
Titze
,
I. R.
,
Riede
,
T.
, and
Popollo
,
P.
(
2008
). “
Nonlinear source-filter coupling in phonation: Vocal exercises
,”
J. Acoust. Soc. Am.
123
,
1902
1915
.
49.
Whitehead
,
J. M.
(
1995
). “
Vox Alouattinae: A preliminary survey of the acoustic characteristics of long-distance calls of howling monkeys
,”
Int J. Primatol.
16
,
121
144
.
50.
Zhang
,
Z.
,
Neubauer
,
J.
, and
Berry
,
D. A.
(
2006a
). “
The influence of subglottal acoustics on laboratory models of phonation
,”
J. Acoust. Soc. Am.
120
,
1558
1569
.
51.
Zhang
,
Z.
,
Neubauer
,
J.
, and
Berry
,
D. A.
(
2006b
). “
Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds
,”
J. Acoust. Soc. Am.
120
,
2841
2849
.
You do not currently have access to this content.