A theory of interaction between the source of sound in phonation and the vocal tract filter is developed. The degree of interaction is controlled by the cross-sectional area of the laryngeal vestibule (epilarynx tube), which raises the inertive reactance of the supraglottal vocal tract. Both subglottal and supraglottal reactances can enhance the driving pressures of the vocal folds and the glottal flow, thereby increasing the energy level at the source. The theory predicts that instabilities in vibration modes may occur when harmonics pass through formants during pitch or vowel changes. Unlike in most musical instruments (e.g., woodwinds and brasses), a stable harmonic source spectrum is not obtained by tuning harmonics to vocal tract resonances, but rather by placing harmonics into favorable reactance regions. This allows for positive reinforcement of the harmonics by supraglottal inertive reactance (and to a lesser degree by subglottal compliant reactance) without the risk of instability. The traditional linear source–filter theory is encumbered with possible inconsistencies in the glottal flow spectrum, which is shown to be influenced by interaction. In addition, the linear theory does not predict bifurcations in the dynamical behavior of vocal fold vibration due to acoustic loading by the vocal tract.

1.
Adachi
,
S.
, and
Sato
,
M.
(
1996
). “
Trumpet sound simulation using a two-dimensional lip vibration model
,”
J. Acoust. Soc. Am.
99
,
1200
1209
.
2.
Alipour
,
F.
,
Montequin
,
D.
, and
Tayama
,
N.
(
2001
). “
Aerodynamic profiles of a hemilarynx with a vocal tract
,”
Ann. Otol. Rhinol. Laryngol.
110
,
550
555
.
3.
Alipour
,
F.
, and
Scherer
,
R. C.
(
2007
). “
On pressure-frequency relations in the excised larynx
,”
J. Acoust. Soc. Am.
122
,
2296
2305
.
4.
Appelman
,
D. R.
(
1967
).
The Science of Vocal Pedagogy: Theory and Application
(
Indiana University Press
, Bloomington, IN).
5.
Atal
,
B. S.
, and
Schroeder
,
M. R.
(
1978
). “
Linear prediction analysis of speech based on a pole-zero representation
,”
J. Acoust. Soc. Am.
64
,
1310
1318
.
6.
Chan
,
R.
, and
Titze
,
I. R.
(
2006
). “
Dependence of phonation threshold pressure on vocal tract acoustics and vocal fold tissue mechanics
,”
J. Acoust. Soc. Am.
119
,
2351
2362
.
7.
Chiba
,
T.
, and
Kajiyama
,
M.
(
1958
).
The Vowel and Its Nature and Structure
(
Tokyo-Kaisenikan
, Tokyo).
8.
Coffin
,
B.
(
1987
).
Coffin’s Sounds of Singing: Principles and Applications of Vocal Techniques with Chromatic Vowel Chart
, 2nd ed. (
The Scarecrow Press
, Metuchen, NJ).
9.
Fant
,
G.
(
1960
).
The Acoustic Theory of Speech Production
(
Moulton
, The Hague).
10.
Fant
,
G.
(
1986
). “
Glottal flow: Models and interaction
,”
J. Phonetics
14
,
393
399
.
11.
Fant
,
G.
, and
Lin
,
Q.
(
1987
). “
Glottal voice source—Vocal tract acoustic interaction
,”
Q. Prog. Status Rep. STL-QPSR
4
,
13
27
.
12.
Fant
,
G.
,
Linjencrants
,
J.
, and
Lin
,
Q.
(
1985
). “
A four-parameter model of glottal flow
,”
STL Q. Prog. Status Rep.
4
,
1
13
.
13.
Flanagan
,
J. L.
(
1968
). “
Source-system interaction in the vocal tract
,”
Ann. N.Y. Acad. Sci.
155
,
9
17
.
14.
Flanagan
,
J. L.
(
1972
).
Speech Analysis, Synthesis, and Perception
(
Springer
, New York).
15.
Flanagan
,
J.
, and
Landgraf
,
L. L.
(
1968
). “
Self-oscillating source for vocal tract synthesizers
,”
IEEE Trans. Audio. Electroacoust.
AU-16
,
57
64
.
16.
Fletcher
,
N. H.
(
1993
). “
Autonomous vibration of simple pressure-controlled valves in gas flows
,”
J. Acoust. Soc. Am.
93
,
2172
2180
.
17.
Fulcher
,
L. P.
,
Scherer
,
R. C.
,
Zhai
,
G.
, and
Zhu
,
Z.
(
2006
). “
Analytic representation of volume flow as a function of geometry and pressure in a static physical model of the glottis
,”
J. Voice
20
,
489
512
.
18.
Hatzikirou
,
H.
,
Fitch
,
W. T. S.
, and
Herzel
,
H.
(
2006
). “
Voice instabilities due to source-tract interactions
,”
Acta. Acust. Acust.
92
,
468
475
.
19.
Hirano
,
M.
(
1975
). “
Phonosurgery: Basic and clinical investigations
,”
Otol. (Fukuoka)
21
,
239
440
.
20.
Ishizaka
,
K.
, and
Flanagan
,
J. L.
(
1972
). “
Synthesis of voiced source sounds from a two-mass model of the vocal cords
,”
Bell Syst. Tech. J.
51
,
1233
1268
.
21.
Jiang
,
J.
, and
Tao
,
C.
(
2007
). “
The minimum glottal airflow to initiate vocal fold oscillation
,”
J. Acoust. Soc. Am.
121
,
2873
2881
.
22.
Joliveau
,
E.
,
Smith
,
J.
, and
Wolfe
,
J.
(
2004
). “
Vocal tract resonances in singing: The soprano voice
,”
J. Acoust. Soc. Am.
116
,
2234
2439
.
23.
Kelly
,
J. L.
, and
Lochbaum
,
C.
(
1962
). “
Speech synthesis
,”
Proceedings of the Fourth International Congress on Acoustics
, Paper G42, pp.
1
4
.
24.
Klatt
,
D. H.
, and
Klatt
,
L. C.
(
1990
). “
Analysis, synthesis, and perception of voice quality variations among female and male talkers
,”
J. Acoust. Soc. Am.
87
,
820
857
.
25.
Koizumi
,
T.
,
Taniguchi
,
S.
, and
Hiromitsu
,
S.
(
1985
). “
Glottal source-vocal tract interaction
,”
J. Acoust. Soc. Am.
78
,
1541
1547
.
26.
Liljencrants
,
J.
(
1985
). “
Speech synthesis with a reflection-type line analog
,” Doctoral dissertation, Department of Speech Communication and Music Acoustics, Royal Institute of Technology, Stockholm, Sweden.
27.
Lucero
,
J. C.
, and
Koenig
,
L. L.
(
2007
). “
On the relation between the phonation threshold lung pressure and the oscillation frequency of the vocal folds
,”
J. Acoust. Soc. Am.
121
,
3280
3283
.
28.
Markel
,
J. D.
, and
Gray
,
A. H. J.
(
1976
).
Linear Prediction of Speech
(
Springer
, New York).
29.
McGowan
,
R. S.
(
1992
). “
Tongue-tip trills and vocal-tract wall compliance
,”
J. Acoust. Soc. Am.
91
,
2903
2910
.
30.
Mergell
,
P.
, and
Herzel
,
H.
(
1997
). “
Modeling biphonation—The role of the vocal tract
,”
Speech Commun.
22
,
141
154
.
31.
Miller
,
D. G.
, and
Schutte
,
H. K.
(
2005
). “ 
‘Mixing’ the registers: Glottal source or vocal tract?
,”
Folia Phoniatr Logop
57
,
278
291
.
32.
Neumann
,
K.
,
Schunda
,
P.
,
Hoth
,
S.
, and
Euler
,
H. A.
(
2005
). “
The interplay between glottis and vocal tract during male passaggio
,”
Folia Phoniatr Logop
57
,
308
327
.
33.
Rachele
,
R.
(
1996
).
Overtone Singing Study Guide
, 2nd ed. (
Cryptic Voices Productions
, Amsterdam, The Netherlands).
34.
Rosenberg
,
A.
(
1971
). “
Effect of the glottal pulse shape on the quality of natural vowels
,”
J. Acoust. Soc. Am.
49
,
583
590
.
35.
Rothenberg
,
M.
(
1981
). “
Acoustic interaction between the glottal source and the vocal tract
,” in
Vocal Fold Physiology
, edited by
K. N.
Stevens
and
M.
Hinano
(
University of Tokyo Press
, Tokyo),
305
328
.
36.
Rothenberg
,
M.
(
1987
). “
Cosi fan tutte and what it means or nonlinear source-tract acoustic interaction in the soprano voice and some implications for the definition of vocal efficiency
,” in
Laryngeal Function in Phonation and Respiration
, edited by
T.
Baer
,
C.
Sasaki
,
K. S.
Harris
, . (
College-Hill Press
, Little, Brown and Company, Boston), pp.
254
269
.
37.
Rothenberg
,
M.
, and
Zahorian
,
S.
(
1977
). “
Nonlinear inverse filtering technique for estimating the glottal-area waveform
,”
J. Acoust. Soc. Am.
61
,
1063
1071
.
38.
Scherer
,
R. C.
,
Titze
,
I. R.
, and
Curtis
,
J. F.
(
1983
). “
Pressure-flow relationships in two models of the larynx having rectangular glottal shapes
,”
J. Acoust. Soc. Am.
73
,
668
676
.
39.
Sondhi
,
M. M.
, and
Schroeter
,
J.
(
1987
). “
A hybrid time-frequency domain articulatory speech synthesizer
,”
IEEE Trans. Acoust., Speech, Signal Process.
35
,
955
967
.
40.
Stevens
,
K.
(
1999
). “
Current studies in linguistics
,”
Acoustic Phonetics
(
MIT
, Cambridge, MA).
41.
Story
,
B.
,
Laukkanen
,
A.-M.
, and
Titze
,
I. R.
(
2000
). “
Acoustic impedance of an artificially lengthened and constricted vocal tract
,”
J. Voice
14
,
455
469
.
42.
Story
,
B. H.
(
1995
). “
Speech simulation with an enhanced wave-reflection model of the vocal tract
.” Ph.D. dissertation,
University of Iowa
, Iowa City, IA.
43.
Story
,
B. H.
(
2005
). “
Synergistic modes of vocal tract articulation for American English vowels
,”
J. Acoust. Soc. Am.
118
,
3834
3859
.
44.
Story
,
B. H.
,
Titze
,
I. R.
, and
Hoffman
,
E. A.
(
1996
). “
Vocal tract area functions from magnietic resonance imaging
,”
J. Acoust. Soc. Am.
100
,
537
554
.
45.
Sundberg
,
J.
(
1977
). “
The acoustics of the singing voice
,”
Sci. Am.
236
,
82
91
.
46.
Svec
,
J. G.
,
Schutte
,
H. K.
, and
Miller
,
D. G.
(
1999
). “
On pitch jumps between chest and falsetto registers in voice: Data from living and excised human larynges
,”
J. Acoust. Soc. Am.
106
,
1523
1531
.
47.
Titze
,
I. R.
(
1984
). “
Parameterization of the glottal area, glottal flow, and vocal fold contact area
,”
J. Acoust. Soc. Am.
75
,
570
580
.
48.
Titze
,
I. R.
(
1988
). “
The physics of small-amplitude oscillation of the vocal folds
,”
J. Acoust. Soc. Am.
83
,
1536
1552
.
49.
Titze
,
I. R.
(
2000
).
Principles of Voice Production
(
National Center for Voice and Speech
, Denver, CO).
50.
Titze
,
I. R.
(
2001
). “
Acoustic interpretation of resonant voice
,”
J. Voice
15
,
519
528
.
51.
Titze
,
I. R.
(
2002
). “
Regulating glottal airflow in phonation: Application of the maximum power transfer theorem to a low dimensional phonation model
,”
J. Acoust. Soc. Am.
111
,
367
376
.
52.
Titze
,
I. R.
(
2004a
). “
A theoretical study of F0-F1 interaction with application to resonant speaking and singing voice
,”
J. Voice
18
,
292
298
.
53.
Titze
,
I. R.
(
2004b
). “
Theory of glottal airflow and source-filter interaction in speaking and singing
,”
Acta. Acust. Acust.
90
,
641
648
.
54.
Titze
,
I. R.
(
2006a
). “
Theoretical analysis of maximum flow declination rate versus maximum area declination rate in phonation
,”
J. Speech Lang. Hear. Res.
49
,
439
447
.
55.
Titze
,
I. R.
(
2006b
).
The Myoelastic-Aerodynamic Theory of Phonation
(
National Center for Voice and Speech
, Denver, CO).
56.
Titze
,
I. R.
, and
Hunter
,
E. J.
(
2007
). “
A two-dimensional biomechanical model of vocal fold posturing
,”
J. Acoust. Soc. Am.
121
,
2254
2260
.
67.
Titze
,
I. R.
,
Riede
,
T.
, and
Popolo
,
P.
(
2008
). “
Nonlinear source-filter coupling in phonation: Vocal exercises
,”
J. Acoust. Soc. Am.
123
,
1902
1915
.
57.
Titze
,
I. R.
, and
Story
,
B. H.
(
1997
). “
Acoustic interactions of the voice source with the lower vocal tract
,”
J. Acoust. Soc. Am.
101
,
2234
2243
.
58.
Titze
,
I. R.
, and
Sundberg
,
J.
(
1992
). “
Vocal intensity in speakers and singers
,”
J. Acoust. Soc. Am.
91
,
2936
2946
.
59.
Van Den Berg
,
J.
(
1957
). “
Subglottal pressures and vibration of vocal folds
,”
Folia Phoniatr.
9
,
65
71
.
60.
Vennard
,
W.
(
1967
).
Singing: Mechanism and Technique
(
Fisher
, New York).
61.
Yumoto
,
E.
, and
Kadota
,
Y.
(
1998
). “
Pliability of the vocal fold mucosa in relation to the mucosal upheaval during phonation
,”
Arch. Otolaryngol. Head Neck Surg.
124
,
897
902
.
62.
Zañartu
,
M.
,
Mongeau
,
L.
, and
Wodlicka
,
G. R.
(
2007
). “
Influence of acoustic loading on an effective single mass model of the vocal folds
,”
J. Acoust. Soc. Am.
121
,
1119
1129
.
63.
Zhang
,
C.
,
Zhao
,
W.
,
Frankel
,
S. H.
, and
Mongeau
,
L.
(
2002
). “
Computational aeroacoustics of phonation, 2. Effects of flow parameters and ventricular folds
,”
J. Acoust. Soc. Am.
112
,
2147
2154
.
64.
Zhang
,
Z.
,
Neubauer
,
J.
, and
Berry
,
D. A.
(
2006a
). “
The influence of subglottal acoustics on laboratory models of phonation
,”
J. Acoust. Soc. Am.
120
,
1558
1569
.
65.
Zhang
,
Z.
,
Neubauer
,
J.
, and
Berry
,
D. A.
(
2006b
). “
Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds
,”
J. Acoust. Soc. Am.
120
,
2841
2849
.
66.
Zhao
,
W.
,
Zhang
,
C.
,
Frankel
,
S. H.
, and
Mongeau
,
L.
(
2002
). “
Computational aeroacoustics of phonation. 1. Computational methods and sound generation mechanisms
,”
J. Acoust. Soc. Am.
112
,
2134
2146
.
You do not currently have access to this content.