Using microphone arrays for estimating source locations and strengths has become common practice in aeroacoustic applications. The classical delay-and-sum approach suffers from low resolution and high sidelobes and the resulting beamforming maps are difficult to interpret. The deconvolution approach for the mapping of acoustic sources (DAMAS) deconvolution algorithm recovers the actual source levels from the contaminated delay-and-sum results by defining an inverse problem that can be represented as a linear system of equations. In this paper, the deconvolution problem is carried onto the sparse signal representation area and a sparsity constrained deconvolution approach (SC-DAMAS) is presented for solving the DAMAS inverse problem. A sparsity preserving covariance matrix fitting approach (CMF) is also presented to overcome the drawbacks of the DAMAS inverse problem. The proposed algorithms are convex optimization problems. Our simulations show that CMF and SC-DAMAS outperform DAMAS and as the noise in the measurements increases, CMF works better than both DAMAS and SC-DAMAS. It is observed that the proposed algorithms converge faster than DAMAS. A modification to SC-DAMAS is also provided which makes it significantly faster than DAMAS and CMF. For the correlated source case, the CMF-C algorithm is proposed and compared with DAMAS-C. Improvements in performance are obtained similar to the uncorrelated case.

1.
W. M.
Humphreys
,
T. F.
Brooks
,
W. W.
Hunter
, and
K. R.
Meadows
, “
Design and use of microphone directional arrays for aeroacoustic measurements
,” Fourth AIAA/CEAS Aeroacoustics Conference, Reno, NV,
1998
, AIAA-98-0471.
2.
R. P.
Dougherty
, “
Beamforming in acoustic testing
,”
Aeroacoustic Measurements
, edited by
T. J.
Mueller
(
Springer
,
New York
,
2002
), pp.
63
97
.
3.
K. R.
Meadows
,
T. F.
Brooks
,
W. M.
Humphreys
, Jr.
,
W. W.
Hunter
, and
C. H.
Gerhold
, “
Aeroacoustic measurements of a wing-flap configuration
,” Third AIAA/CEAS Aeroacoustics Conference, Atlanta, GA,
1997
, AIAA Paper 97-1595.
4.
P.
Stoica
and
R. L.
Moses
,
Spectral Analysis of Signals
(
Prentice-Hall
,
Upper Saddle River, NJ
,
2005
).
5.
T. F.
Brooks
,
M. A.
Marcolini
, and
D. S.
Pope
, “
A directional array approach for the measurement of rotor noise source distributions with controlled spatial resolution
,”
J. Sound Vib.
112
,
192
197
(
1987
).
6.
J.
Li
,
Y.
Xie
,
P.
Stoica
,
X.
Zheng
, and
J.
Ward
, “
Beampattern synthesis via a matrix approach for signal power estimation
,”
IEEE Trans. Signal Process.
55
,
5643
5657
(
2007
).
7.
J.
Li
,
P.
Stoica
, and
Z.
Wang
, “
On robust Capon beamforming and diagonal loading
,”
IEEE Trans. Signal Process.
51
,
1702
1715
(
2003
).
8.
J.
Li
and
P.
Stoica
, “
Efficient mixed-spectrum estimation with applications to target feature extraction
,”
IEEE Trans. Signal Process.
44
,
281
295
(
1996
).
9.
Z.
Wang
,
J.
Li
,
P.
Stoica
,
T.
Nishida
, and
M.
Sheplak
, “
Wideband RELAX and wideband CLEAN for aeroacoustic imaging
,”
J. Acoust. Soc. Am.
115
,
757
767
(
2004
).
10.
T. F.
Brooks
and
W. M.
Humphreys
, “
A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays
,”
J. Sound Vib.
294
,
856
879
(
2006
).
11.
T. F.
Brooks
and
W. M.
Humphreys
, “
A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays
,” Tenth AIAA/CEAS Aeroacoustics Conference, Manchester, UK,
2004
, AIAA-2004-2954.
12.
K.
Ehrenfried
and
L.
Koop
, “
A comparison of iterative deconvolution algorithms for the mapping of acoutic sources
,” 12th AIAA/CEAS Aeroacoustics Conference, Cambridge, MA,
2006
, AIAA-2006-2711.
13.
P. A.
Ravetta
,
R. A.
Burdisso
, and
W. F.
Ng
, “
Noise source localization and optimization of phased array results
,” 12th AIAA/CEAS Aeroacoustics Conference, Cambridge, MA,
2006
, AIAA-2006-2713.
14.
R.
Dougherty
, “
Extensions of DAMAS and benefits and limitations of deconvolution in beamforming
,” 11th AIAA/CEAS Aeroacoustics Conference, Monterey, CA,
2005
, AIAA-2005-2961.
15.
T. F.
Brooks
and
W. M.
Humphreys
, “
Extension of damas phased array processing for spatial coherence determination (DAMAS-C)
,” 12th AIAA/CEAS Aeroacoustics Conference, Cambridge, MA,
2006
, AIAA-2006-2654.
16.
T. F.
Brooks
and
W. M.
Humphreys
, “
Three-dimensional application of DAMAS methodology for aeroacoustic noise source definition
,” 11th AIAA/CEAS Aeroacoustics Conference, Monterey, CA,
2005
, AIAA-2005-2960.
17.
D. L.
Donoho
and
M.
Elad
, “
Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization
,”
Proc. Natl. Acad. Sci. U.S.A.
100
,
2197
2202
(
2003
).
18.
R.
Tibshirani
, “
Regression shrinkage and selection via the lasso
,”
J. R. Stat. Soc. Ser. B (Methodol.)
58
,
267
288
(
1996
).
19.
S. S.
Chen
,
D. L.
Donoho
, and
M. A.
Saunders
, “
Atomic decomposition by basis pursuit
,”
SIAM J. Sci. Comput. (USA)
20
,
33
61
(
1998
).
20.
J. A.
Tropp
, “
Just relax: Convex programming methods for identifying sparse signals
,”
IEEE Trans. Inf. Theory
51
,
1030
1051
(
2006
).
21.
J. J.
Fuchs
, “
On sparse representations in arbitrary redundant bases
,”
IEEE Trans. Inf. Theory
50
,
1341
1344
(
2004
).
22.
J. J.
Fuchs
, “
Recovery of exact sparse representations in the presence of bounded noise
,”
IEEE Trans. Inf. Theory
51
,
3601
3608
(
2005
).
23.
S. F.
Cotter
,
B. D.
Rao
,
E.
Kjersti
, and
K.
Kreutz-Delgado
, “
Sparse solutions to linear inverse problems with multiple measurement vectors
,”
IEEE Trans. Signal Process.
53
,
2477
2488
(
2005
).
24.
D. P.
Wipf
and
B. D.
Rao
, “
Sparse Bayesian learning for basis selection
,”
IEEE Trans. Signal Process.
52
,
2153
2164
(
2004
).
25.
M. A. T.
Figueiredo
, “
Adaptive sparseness for supervised learning
,”
IEEE Trans. Pattern Anal. Mach. Intell.
25
,
1150
1159
(
2003
).
26.
D. P.
Wipf
and
B. D.
Rao
, “
An empirical Bayesian strategy for solving the simultaneous sparse approximation problem
,”
IEEE Trans. Signal Process.
55
,
3704
3716
(
2007
).
27.
D. M.
Malioutov
,
M.
Çetin
, and
A. S.
Willsky
, “
A sparse signal reconstruction perspective for source localization with sensor arrays
,”
IEEE Trans. Signal Process.
53
,
3010
3022
(
2005
).
28.
J. J.
Fuchs
, “
Linear programming in spectral estimation. Application to array processing
,” in
IEEE Proceedings of Acoustics, Speech, and Signal Processing
, Atlanta, GA,
1996
, pp.
3161
3164
.
29.
J. J.
Fuchs
, “
On the application of the global matched filter to DOA estimation with uniform circular arrays
,”
IEEE Trans. Signal Process.
49
,
702
709
(
2001
).
30.
H. L.
Van Trees
,
Optimum Array Processing
,
Detection, Estimation, and Modulation Theory
Part IV (
Wiley
,
New York
,
2002
).
31.
J. F.
Sturm
, “
Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones
,”
Optim. Methods Software
11-12
,
625
653
(
1999
).
32.
J.
Löfberg
, “
YALMIP: A toolbox for modeling and optimization in MATLAB
,” The 2004 IEEE International Symposium on Computer Aided Control Systems Design, Taipei, Taiwan, pp.
284
289
.
33.
S.
Boyd
and
L.
Vandenberghe
,
Convex Optimization
(
Cambridge University Press
,
Cambridge, UK
,
2004
).
34.
T. F.
Brooks
and
W. M.
Humphreys
, Jr.
, “
Effect of directional array size on the measurement of airframe noise components
,” Fifth AIAA/CEAS Aeroacoustics Conference and Exhibit, Bellevue, WA,
1999
, AIAA Paper 99-1958.
You do not currently have access to this content.