Successful processing of materials by powder sintering relies on the creation of strong interparticle bonds. During certain critical stages of the sintering process, the medium may be modeled as two phases consisting of the particles and a surrounding matrix. Ultrasonic methods have been proposed as a potential tool for monitoring such sintering processes. Thus, an understanding of the propagation and scattering of elastic waves in two-phase solids is of fundamental importance to these monitoring techniques. In this article, expressions for the ultrasonic attenuations are developed based on the spatial statistics of the density and Lamé parameters of the material constituents under assumptions of statistical homogeneity and statistical isotropy. The formulation is based on the solution of the elastodynamic Dyson equation within the limits of the first-order smoothing approximation. Since the geometric two-point correlation function plays a central role in the model, numerical models are developed using Voronoi polycrystals surrounded by a matrix of different material properties. The spatial statistics of the medium are extracted from these models. The results presented suggest new ultrasonic techniques may be developed to extract multiple correlation lengths for such two-phase microstructures.

1.
M. J.
Johnson
and
J. R.
Bowler
, “
Pulsed eddy-current measurements for the characterization of thin layers and surface treatments
,”
Review of Progress in Quantitative Nondestructive Evaluation
, edited by
D. O.
Thompson
and
D. E.
Chimenti
(
Plenum
, New York,
1997
), Vol.
17A
, pp.
251
257
.
2.
N.
Kulkarni
,
B.
Moudgil
, and
M.
Bhardwaj
, “
Ultrasonic characterization of green and sintered ceramics: I, time domain
,”
Am. Ceram. Soc. Bull.
73
(
7
),
83
85
(
1994
).
3.
J. C.
Foley
and
D. K.
Rehbein
, “
In-situ nondestructive evaluation methods for characterizing sintering of aluminum powder metallurgy compacts
,”
P/M Science and Technology Briefs
2
(
1
),
10
13
(
2000
).
4.
G. C.
Papanicolaou
,
L. V.
Ryzhik
, and
J. B.
Keller
, “
Stability of the P-to-S energy ratio in the diffusive regime
,”
Bull. Seismol. Soc. Am.
86
(
4
),
1107
1115
(
1996
).
5.
L. V.
Ryzhik
,
G. C.
Papanicolaou
, and
J. B.
Keller
, “
Transport equations for elastic and other waves in random media
,”
Wave Motion
24
,
327
370
(
1996
).
6.
F. E.
Stanke
and
G. S.
Kino
, “
A unified theory for elastic wave propagation in polycrystalline materials
,”
J. Acoust. Soc. Am.
75
,
665
681
(
1984
).
7.
F. E.
Stanke
, “
Spatial autocorrelation functions for calculations of effective propagation constants in polycrystalline materials
,”
J. Acoust. Soc. Am.
80
,
1479
1485
(
1986
).
8.
S.
Ahmed
and
R. B.
Thompson
, “
Propagation of elastic waves in equiaxed stainless-steel polycrystals with aligned [001] axes
,”
J. Acoust. Soc. Am.
99
(
4
),
2086
2096
(
1996
).
9.
J. A.
Turner
, “
Elastic wave propagation and scattering in heterogeneous, anisotropic media: Textured polycrystalline materials
,”
J. Acoust. Soc. Am.
106
,
541
552
(
1999
).
10.
J. A.
Turner
and
P.
Anugonda
, “
Scattering of elastic waves in heterogeneous media with local isotropy
,”
J. Acoust. Soc. Am.
109
,
1787
1795
(
2001
).
11.
L.
Yang
and
J. A.
Turner
, “
Scattering of elastic waves in damaged media
,”
J. Acoust. Soc. Am.
113
,
2992
3000
(
2003
).
12.
C.
Man
,
R.
Paroni
,
Y.
Xiang
, and
E. A.
Kenik
, “
On the geometric autocorrelation function of polycrystalline materials
,”
J. Comput. Appl. Math.
190
,
200
210
(
2006
).
13.
U.
Frisch
, “
Wave propagation in random media
,”
Probabilistic Methods in Applied Mathematics
, edited by
A. T.
Barucha-Reid
(
Academic
, New York,
1968
), Vol. 1, pp.
75
198
.
14.
R. L.
Weaver
, “
Diffusion of ultrasound in polycrystasls
,”
J. Mech. Phys. Solids
38
,
55
86
(
1990
).
15.
K. Z.
Markov
and
J. R.
Willis
, “
On the two-point correlation function for dispersions of nonoverlapping spheres
,”
Math. Models Meth. Appl. Sci.
8
(
2
),
359
377
(
1998
).
16.
K. Z.
Markov
, “
On the correlation functions of two-phase random media and related problems
,”
Proc. R. Soc. London, Ser. A
455
,
1049
1066
(
1999
).
17.
E.
Vanmarcke
,
Random Fields, Analysis and Synthesis
(
MIT Press
, Cambridge, MA,
1983
).
18.
S.
Ghosh
,
Z.
Nowak
, and
K.
Lee
, “
Tessellation-based computational methods for the characterization and analysis of heterogeneous microstructures
,”
Compos. Sci. Technol.
57
(
9
),
1187
1210
(
1997
).
19.
P. D.
Zavattieri
,
P. V.
Raghuram
, and
H. D.
Espinosa
, “
A computational model of ceramic microstructures subjected to multi-axial dynamic loading
,”
J. Mech. Phys. Solids
49
(
1
),
27
68
(
2001
).
20.
W.
Brostow
and
V. M.
Castano
, “
Voronoi polyhedra as a tool for dealing with spatial structures of amorphous solids and liquids and dense gases
,”
J. Mater. Educ.
21
,
297
(
1999
).
21.
S.
Kumar
,
S. K.
Kurtz
,
J. R.
Banavar
, and
M. G.
Sharma
, “
Properties of a three-dimensional Poisson-Voronoi tesselation: A Monte Carlo study
,”
J. Stat. Phys.
67
(
3/4
),
523
551
(
1992
).
22.
S.
Torquato
and
G.
Stell
, “
Microstructure of two-phase random media. I. The N-point probability function
,”
J. Chem. Phys.
77
(
4
),
2071
2077
(
1982
).
23.
S.
Torquato
and
G.
Stell
, “
Microstructure of two-phase random media. II. The Mayer–Montroll and Kirkwood–Salsburg Hierarchies
,”
J. Chem. Phys.
78
(
6
),
3262
3272
(
1983
).
24.
S.
Torquato
and
G.
Stell
, “
Microstructure of two-phase random media. III. The N-point matrix probability functions for fully penetrable spheres
,”
J. Chem. Phys.
79
,
1505
1510
(
1983
).
25.
S.
Torquato
and
G.
Stell
, “
Microstructure of two-phase random media. IV. Expected surface area of a dispersion of penetrable spheres and its characteristics function
,”
J. Chem. Phys.
80
(
2
),
878
880
(
1984
).
26.
S.
Torquato
and
G.
Stell
, “
Microstructure of two-phase random media. V. The N-point matrix probability functions for impenetrable spheres
,”
J. Chem. Phys.
82
,
980
987
(
1985
).
27.
P. B.
Corson
, “
Correlation functions for predicting properties of heterogeneous materials. I. Experimental measurement of spatial correlation functions in multiphase solids
,”
J. Appl. Phys.
45
(
7
),
3159
3164
(
1976
).
28.
P. B.
Corson
, “
Correlation functions for predicting properties of heterogeneous materials. II. Empirical construction of spatial correlation functions for two-phase solids
,”
J. Appl. Phys.
45
(
7
),
3165
3170
(
1976
).
29.
D.
Cule
and
S.
Torquato
, “
Generating random media from limited microstructural information via stochastic optimization
,”
J. Appl. Phys.
86
(
6
),
3428
3437
(
1976
).
30.
C. L. Y.
Yeong
and
S.
Torquato
, “
Reconstructing random media
,”
Phys. Rev. E
57
(
1
),
495
506
(
1998
).
31.
X.-G.
Zhang
,
W. A.
Simpson
, Jr.
, and
J. M.
Vitek
, “
Ultrasonic attenuation due to grain boundary scattering in copper and copper-Aluminum
,”
J. Acoust. Soc. Am.
116
(
1
),
109
116
(
2004
).
32.
J.
Mittleman
,
K. Y.
Han
, and
R. B.
Thompson
, “
Ultrasonic examination of Ti-6-4 and Ni-trided Ti-6-4 Materials
,”
Review of Progress in Quantitative NDE
, edited by
D. O.
Thompson
and
D. E.
Chimenti
(
Plenum
, New York,
1995
), Vol. 14, pp.
1457
1464
.
You do not currently have access to this content.