Piezo-driven inkjet systems are very sensitive to air entrapment. The entrapped air bubbles grow by rectified diffusion in the ink channel and finally result in nozzle failure. Experimental results on the dynamics of fully grown air bubbles are presented. It is found that the bubble counteracts the pressure buildup necessary for the droplet formation. The channel acoustics and the air bubble dynamics are modeled. For good agreement with the experimental data it is crucial to include the confined geometry into the model: The air bubble acts back on the acoustic field in the channel and thus on its own dynamics. This two-way coupling limits further bubble growth and thus determines the saturation size of the bubble.

1.
H. P.
Le
, “
Progress and trends in ink-jet printing technology
,”
J. Imaging Sci. Technol.
42
,
49
62
(
1998
).
2.
C.
Williams
, “
Ink-jet printers go beyond paper
,”
Phys. World
19
,
24
29
(
2006
).
3.
H. S.
Koo
,
M.
Chen
, and
P. C.
Pan
, “
LCD-based color filter films fabricated by a pigment-based photo resist inks and printing technology
,”
Thin Solid Films
515
,
896
901
(
2006
).
4.
O. A.
Basaran
, “
Small-scale free surface flows with breakup: Drop formation and emerging applications
,”
AIChE J.
48
,
1842
1848
(
2002
).
5.
J. F.
Dijksman
, “
Hydrodynamics of small tubular pumps
,”
J. Fluid Mech.
139
,
173
191
(
1984
).
6.
J. D.
Brock
,
I. M.
Cohen
,
I. P.
Ivanov
,
H. P.
Le
, and
J.
Roy
, “
Oscillations of an air bubble in an ink jet
,”
J. Imaging Technol.
10
,
127
129
(
1984
).
7.
N. P.
Hine
, “
Deaeration system for a high-performance drop-on-demand ink jet
,”
J. Imaging Technol.
17
,
223
227
(
1991
).
8.
J.
de Jong
,
H.
Reinten
,
M.
van den Berg
,
H.
Wijshoff
,
M.
Versluis
,
G.
de Bruin
, and
D.
Lohse
, “
Air entrapment in piezo-driven inkjet printheads
,”
J. Acoust. Soc. Am.
120
,
1257
1265
(
2006
).
9.
M. M.
Fyrillas
and
A. J.
Szeri
, “
Dissolution or growth of soluble spherical oscillating bubbles
,”
J. Fluid Mech.
289
,
259
314
(
1995
).
10.
S.
Hilgenfeldt
,
D.
Lohse
, and
M. P.
Brenner
, “
Phase diagrams for sonoluminescing bubbles
,”
Phys. Fluids
8
,
2808
2826
(
1996
).
11.
C.
Caskey
,
D.
Kruse
,
P.
Dayton
,
T.
Kitano
, and
K.
Ferrara
, “
Microbubble oscillation in tubes with diameters of 12, 25, and 195 microns
,”
Appl. Phys. Lett.
88
,
033902
(
2006
).
12.
P.
Zhong
,
Y.
Zhou
, and
S.
Zhu
, “
Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in SWL
,”
Ultrasound Med. Biol.
27
,
119
134
(
2001
).
13.
E.
Sassaroli
and
K.
Hynynen
, “
Resonance frequency of microbubbles in small blood vessels: a numerical study
,”
Phys. Med. Biol.
50
,
5293
5305
(
2005
).
14.
S.
Qin
and
K.
Ferrara
, “
The natural frequency of nonlinear oscillation of ultrasound contrast agents in microvessels
,”
Ultrasound Med. Biol.
33
,
1140
1148
(
2007
).
15.
S.
Qin
,
Y.
Hu
, and
Q.
Jiang
, “
Oscillatory interaction between bubbles and confining microvessels and its implications on clinical vascular injuries of shock-wave lithotripsy
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
53
,
1322
1329
(
2006
).
16.
E.
Ory
,
H.
Yuan
,
A.
Prosperetti
,
S.
Popinet
, and
S.
Zaleski
, “
Growth and collapse of a vapor bubble in a narrow tube
,”
Phys. Fluids
12
,
1268
1277
(
2000
).
17.
H.
Yuan
,
H.
Oguz
, and
A.
Prosperetti
, “
Growth and collapse of a vapor bubble in a small tube
,”
Int. J. Heat Mass Transfer
42
3643
3657
(
1999
).
18.
J.
Cui
,
M.
Hamilton
,
P.
Wilson
, and
E.
Zabolotskaya
, “
Bubble pulsations between parallel plates
,”
J. Acoust. Soc. Am.
119
,
2067
2072
(
2006
).
19.
J.
de Jong
,
R.
Jeurissen
,
H.
Borel
,
M.
van den Berg
,
H.
Wijshoff
,
H.
Reinten
,
M.
Versluis
,
A.
Prosperetti
, and
D.
Lohse
, “
Entrapped air bubbles in piezo-driven inkjet printing: Their effect on the droplet velocity
,”
Phys. Fluids
18
,
121511
(
2006
).
20.
C. E.
Brennen
,
Cavitation and Bubble Dynamics
(
Oxford University Press
, Oxford,
1995
).
21.
H.
Tijdeman
, “
On the propagation of sound waves in cylindrical tubes
,”
J. Sound Vib.
39
,
1
33
(
1975
).
22.
H. N.
Oğuz
and
A.
Prosperetti
, “
The natural frequency of oscillation of gas bubbles in tubes
,”
J. Acoust. Soc. Am.
103
,
3301
3308
(
1998
).
23.
J. R.
Womersley
, “
Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known
,”
J. Physiol. (London)
127
,
553
563
(
1955
).
24.
X. M.
Chen
and
A.
Prosperetti
, “
Thermal processes in the oscillations of gas bubbles in tubes
,”
J. Acoust. Soc. Am.
104
,
1389
1398
(
1998
).
25.
J.
Billingham
and
A. C.
King
,
Wave Motion
(
Cambridge University Press
, Cambridge,
2000
).
26.
J.
Lighthill
,
Waves in Fluids
(
Cambridge University Press
, Cambridge,
1978
).
You do not currently have access to this content.