Behavioral and ecological studies would benefit from the ability to automatically identify species from acoustic recordings. The work presented in this article explores the ability of hidden Markov models to distinguish songs from five species of antbirds that share the same territory in a rainforest environment in Mexico. When only clean recordings were used, species recognition was nearly perfect, 99.5%. With noisy recordings, performance was lower but generally exceeding 90%. Besides the quality of the recordings, performance has been found to be heavily influenced by a multitude of factors, such as the size of the training set, the feature extraction method used, and number of states in the Markov model. In general, training with noisier data also improved recognition in test recordings, because of an increased ability to generalize. Considerations for improving performance, including beamforming with sensor arrays and design of preprocessing methods particularly suited for bird songs, are discussed. Combining sensor network technology with effective event detection and species identification algorithms will enable observation of species interactions at a spatial and temporal resolution that is simply impossible with current tools. Analysis of animal behavior through real-time tracking of individuals and recording of large amounts of data with embedded devices in remote locations is thus a realistic goal.

1.
Ali
,
A. M.
,
Yao
,
K.
,
Collier
,
T. C.
,
Taylor
,
C. E.
,
Blumstein
,
D. T.
, and
Girod
,
L.
(
2007
). “
An empirical study of collaborative acoustic source localization
,” in
Proceedings of the Sixth International Conference on Information Processing in Sensor Networks
,
Cambridge, MA
(
ACM
,
New York
), pp.
41
50
.
2.
Anderson
,
S. E.
,
Dave
,
A. S.
, and
Margoliash
,
D.
(
1996
). “
Template-based automatic recognition of birdsong syllables from continuous recordings
,”
J. Acoust. Soc. Am.
100
,
1209
1219
.
3.
Ashiya
,
T.
, and
Nakagawa
,
M.
(
1993
). “
A proposal of a recognition system for the species of birds receiving bird calls—An application of recognition systems for environmental sound
,”
IEICE Trans. Fundamentals
E76-A
,
1858
1860
.
5.
Blumstein
,
D. T.
, and
Munos
,
O.
(
2005
). “
Individual, age and sex specific information is contained in yellow-bellied marmot alarm calls
,”
Anim. Behav.
69
,
353
361
.
6.
Catchpole
,
C. K.
, and
Slater
,
P. J. B.
(
1995
).
Bird Song: Biological Themes and Variations
(
Cambridge University Press
, New York).
7.
Charif
,
R. A.
,
Clark
,
C. W.
, and
Fristrup
,
K. M.
(
2006
). “
Raven 1.3 user’s manual
,” Technical Report,
Cornell Laboratory of Ornithology
, Ithaca, NY.
8.
Chen
,
C.
,
Ali
,
A.
,
Wang
,
H.
,
Asgari
,
S.
,
Park
,
H.
,
Hudson
,
R.
,
Yao
,
K.
, and
Taylor
,
C. E.
(
2006
). “
Design and testing of robust acoustic arrays for localization and beamforming
,” in
IEEE Proceedings of the Sixth International Conference on Information Processing in Sensor Networks
,
Cambridge, MA
.
9.
Chesmore
,
D.
(
2004
). “
Automated bioacoustic identification of species
,”
An. Acad. Bras. Cienc.
76
,
435
440
.
10.
Clark
,
C.
,
Marler
,
P.
, and
Beeman
,
K.
(
1987
). “
Quantitative analysis of animal vocal phonology: An application to swamp sparrow sound
,”
Ethology
76
,
101
115
.
12.
Fagerlund
,
S.
(
2004
). “
Automatic recognition of bird species by their sounds
,” Master’s thesis,
Helsinki University of Technology
, Helsinki, Finland.
13.
Fagerlund
,
S.
, and
Härmä
,
A.
(
2004
). “
Parametrization of inharmonic bird sounds for automatic recognition
,” in
13th European Signal Processing Conference
, Antalya, Turkey, September 4–8, 2005.
14.
Härmä
,
A.
(
2003
). “
Automatic identification of bird species based on sinusoidal modeling of syllables
,” in
IEEE International Conference on Acoustics, Speech, Signal Processing
(ICASSP 2003), April 6–10, Hong Kong, China.
15.
Kogan
,
J. A.
, and
Margoliash
,
D.
(
1998
). “
Automated recognition of bird song elements from continuous recordings using dynamic time warping and hidden Markov models: A comparative study
,”
J. Acoust. Soc. Am.
103
,
2185
2196
.
16.
Kwan
,
C.
,
Mei
,
G.
,
Zhao
,
X.
,
Ren
,
Z.
,
Xu
,
R.
,
Stanford
,
V.
,
Rochet
,
C.
,
Aube
,
J.
, and
Ho
,
K.
(
2004
). “
Bird classification algorithms: Theory and experiemental results
,” in Acoustic, Speech, and Signal Processing, 2004 Proceedings, IEEE International Conference, Montreal, Canada, May 2004.
17.
McIlraith
,
A. L.
, and
Card
,
H. C.
(
1997
). “
Birdsong recognition using backpropagation and multivariate statistics
,”
IEEE Trans. Signal Process.
45
,
2740
2748
.
18.
Nelson
,
D. A.
(
1989
). “
The importance of invariant and distinctive features in species recognition of bird song
,”
Condor
91
,
120
130
.
19.
Rabiner
,
L. E.
(
1989
). “
A tutorial on hidden Markov models and selected applications in speech recognition
,” in
Proc. IEEE
77
,
257
286
.
20.
Rabiner
,
L. E.
, and
Juang
,
B.-H.
(
1993
).
Fundamentals of Speech Recognition
(
Prentice Hall
, Englewood Cliffs, NJ).
21.
Scheifele
,
P. M.
,
Andrew
,
S.
,
Cooper
,
R. A.
,
Darre
,
M.
,
Musiek
,
F. E.
, and
Max
,
L.
(
2005
). “
Indication of a Lombard vocal response in the St. Lawrence River beluga
,”
J. Acoust. Soc. Am.
117
,
1486
1492
.
22.
Sczewczyk
,
R. E.
,
Osterweil
,
J.
,
Pllastre
,
M.
,
Hamilton
,
M.
,
Mainwaring
,
A.
, and
Estrin
,
D.
(
2004
). “
Habitat monitoring with sensor networks
,”
Commun. ACM
47
,
34
40
.
23.
Somervuo
,
P.
(
2000
). “
Self-organizing maps for signal and symbol sequences
,” Ph.D. thesis,
Helsinki University of Technology
, Helsinki, Finland.
24.
Tchernichovski
,
O.
,
Nottebohm
,
F.
,
Ho
,
C. E.
,
Pesaran
,
B.
, and
Mitra
,
P. P.
(
2000
). “
A procedure for an automated measurement of song similarity
,”
Anim. Behav.
59
,
1167
1176
.
25.
Trifa
,
V.
(
2006
). “
A framework for bird songs detection, recognition and localization using acoustic sensor networks
,” Master’s thesis,
University of California Los Angeles and École Polytechnique Fédérale de Lausanne
.
26.
Trifa
,
V.
,
Girod
,
L.
,
Collier
,
T.
,
Blumstein
,
D.
, and
Taylor
,
C.
(
2007
). “
Automated wildlife monitoring using self-configuring sensor networks deployed in natural habitats
,” in
Proceedings of the International Symposium on Artificial Life and Robotics (AROB 12th 2007)
, Beppu, Japan.
27.
Vilches
,
E.
,
Escobar
,
I. A.
,
Vallejo
,
E. E.
, and
Taylor
,
C. E.
(
2006
). “
Data mining applied to acoustic bird species recognition
,” in 18th International Conference on Pattern Recognition (ICPR 2006), 20–24 August, Hong Kong, China.
28.
Wilde
,
M.
, and
Menon
,
V.
(
2003
). “
Bird call recognition using hidden Markov models
,” Technical Report,
EECS Department, Tulane University
.
30.
Young
,
S.
,
Kershaw
,
D.
,
Odell
,
J.
,
Ollason
,
D.
,
Valtchev
,
V.
, and
Woodland
,
P.
(
2002
). “
HTK Book 3.2.1
,” Cambridge University Engineering Department.
You do not currently have access to this content.