The work addresses the definition of a wavelet that is adapted to analyze a flexural impulse response of a beam or plate that can be modeled with the Euler–Bernoulli bending theory. The wavelet gives the opportunity to directly analyze the dispersion characteristics of a pulse. The aim is to localize a source or to measure material parameters. An overview of the mathematical properties of the wavelet is presented. An algorithm for the optimal extraction of the dispersion characteristics with the use of genetic algorithms is outlined. The application of the wavelet is shown in an example and experiment.

1.
T.
Önsay
and
A. G.
Haddow
, “
Wavelet transform analysis of transient wave propagation in a dispersive medium
,”
J. Acoust. Soc. Am.
95
,
1441
1449
(
1994
).
2.
K.
Kishimoto
,
M. H. H.
Inoue
, and
T.
Shibuya
, “
Time frequency analysis of dispersive waves by means of wavelet transform
,”
J. Appl. Mech.
62
,
841
46
(
1995
).
3.
H.
Yamada
,
Y.
Mizutani
,
H.
Nishino
,
M.
Takemoto
, and
K.
Ono
, “
Lamb wave source location of impact on anisotropic plates
,”
J. Acoust. Emiss.
18
,
51
60
(
2000
).
4.
L.
Gaul
and
S.
Hurlebaus
, “
Identification of the impact location on a plate using wavelets
,”
Mech. Syst. Signal Process.
12
(
6
),
783
795
(
1998
).
5.
C.
Junsheng
,
Y.
Dejie
, and
Y.
Yu
, “
Application of an impulse response wavelet to fault diagnosis of rolling bearings
,”
Mech. Syst. Signal Process.
21
,
920
929
(
2005
).
6.
F. L.
di Scalea
and
J.
McNamara
, “
Measuring high-frequency wave propagation in railroad tracks by joint time-frequency analysis
,”
J. Sound Vib.
273
(
3
),
637
651
(
2004
).
7.
A.
Messina
, “
Detecting damage in beams through digital differentiator filters and continuous wavelet transforms
,”
J. Sound Vib.
272
(
1
),
385
412
(
2004
).
8.
Y.
Hayashi
,
S.
Ogawa
,
H.
Cho
, and
M.
Takemoto
, “
Non-contact estimation of thickness and elastic properties of metallic foils by the wavelet transform of laser-generated Lamb waves
,”
NDT & E Int.
32
(
1
),
21
27
(
1998
).
9.
M.-N.
Ta
and
J.
Lardies
, “
Identification of weak nonlinearities on damping and stiffness by the continuous wavelet transform
,”
J. Sound Vib.
293
(
1
),
16
37
(
2006
).
10.
P.
Masson
,
A.
Berry
, and
P.
Micheau
, “
A wavelet approach for the active structural acoustic control
,”
J. Acoust. Soc. Am.
104
(
3
),
1453
1466
(
1998
).
11.
Y.
Kim
and
E.
Kim
, “
Effectiveness of the continuous wavelet transform in the analysis of some dispersive elastic waves
,”
J. Acoust. Soc. Am.
110
(
1
),
86
94
(
2001
).
12.
N. P. R.
Hill
, “
Contact sensitive device
,” New Transducers Limited U.S. Patent No. 7,157,649 (
2000
).
13.
D. M.
Sullivan
, “
Contact sensitive device
,” New Transducers Limited U.S. Patent No. 6,922,642 (
2004
).
14.
M.
Brandstein
and
D.
Ward
,
Microphone Arrays Signal Processing Techniques and Applications
(
Springer
,
New York
,
2001
).
15.
J.
Jiao
,
C.
He
,
B.
Wu
, and
R.
Fei
, “
Application of wavelet transform on modal acoustic emission source location in thin plates with one sensor
,”
Int. J. Pressure Vessels Piping
81
,
427
431
(
2004
).
16.
J. C.
Hong
,
K. H.
Sun
, and
Y. Y.
Kim
, “
Dispersion-based short-time Fourier transform applied to dispersive waves
,”
J. Acoust. Soc. Am.
117
(
5
),
2949
2960
(
2005
).
17.
B.
Liu
, “
Adaptive harmonic wavelet transform with applications in vibration analysis
,”
J. Sound Vib.
262
(
1
),
45
64
(
2003
).
18.
S.
Mann
and
S.
Haykin
, “
The chirplet transform: A generalization of Gabor’s logon transform
,”
Vision Interface ’91
,
205
212
(
1991
).
19.
S.
Mann
and
S.
Haykin
, “
The chirplet transform: Physical considerations
,”
IEEE Trans. Signal Process.
43
,
2745
2761
(
1995
).
20.
J.
Boussinesq
,
Application des Potentials a l’Etude de l’Equilibre et du Mouvement des Solides Elastiques
(
Gauthier-Villars
,
Paris
,
1885
), (Applications of the Potential to the Research of the Equilibrium and Movement of Elastic Solids).
21.
L.
Cremer
,
M.
Heckl
, and
B.
Petersson
,
Structure-Borne Sound
(
Springer-Verlag
,
Berlin
,
2005
).
22.
W.
Nowacki
,
Dynamics of Elastic Systems
(
Chapman and Hall
,
London
,
1963
).
23.
L.
Meirovitch
,
Analytical Methods in Vibrations
(
Collier-Macmillan
,
1967
).
24.
R.
Büssow
, “
Wavelet transformation of structure borne sound signals for dispersion characterization and source localization
,” Ph.D. thesis,
Berlin University of Technology
(
2008
).
25.
S.
Mallat
,
A Wavelet Tour of Signal Processing
(
Academic Press
,
New York
,
1998
).
26.
A.
Louis
,
P.
Maaß
, and
A.
Rieder
,
Wavelets
(
Teubner
,
Leipzig
,
1994
).
27.
S.
Bochner
, “
Beiträge zur Theorie der fastperiodischen Funktionen
,”
Ann. Math.
96
(
1
),
119
147
(
1927
), (Contributions to the theory of almost periodic functions).
28.
H.
Pohlheim
,
Evolutionäre Algorithmen
(
Springer
,
New York
,
2000
), (Evolutionary algorithms).
29.
C.
Park
,
W.
Seong
, and
P.
Gerstoft
, “
Geoacoustic inversion in time domain using ship of opportunity noise recorded on a horizontal towed array
,”
J. Acoust. Soc. Am.
117
(
4
),
1933
1941
(
2005
).
30.
L.
Carin
,
H.
Liu
,
T.
Yoder
,
L.
Couchman
,
B.
Houston
, and
J.
Bucaro
, “
Wideband time-reversal imaging of an elastic target in an acoustic waveguide
,”
J. Acoust. Soc. Am.
115
(
1
),
259
268
(
2004
).
31.
A.
Chipperfield
,
P.
Fleming
,
H.
Pohlheim
, and
C.
Fonseca
,
The Genetic Algorithm Toolbox for MATLAB
,
Department of Automatic Control and Systems Engineering of The University of Sheffield
,
Sheffield, United Kingdom
.
32.
R.
Büssow
, “
An algorithm for the continuous morlet wavelet transform
,”
Mech. Syst. Signal Process.
21
(
8
),
2970
2979
(
2007
).
33.
R.
Büssow
, “
Applications of the flexural impulse response functions in the time domain
,”
Acta. Acust. Acust.
94
(
2
),
207
214
(
2008
).
34.
L.
Pochhammer
, “
Über hypergeometrische Funktionen nter Ordnung
,”
J. Reine Angew. Math.
71
,
316
352
(
1869
), (on hypergeometric functions of nth order).
35.
S. P.
Timoshenko
,
History of Strength of Materials
(
McGraw–Hill
,
New York
,
1953
).
36.
L.
Pochhammer
, “
Beitrag zur Theorie der Biegung des Kreiszylinder
,”
J. Reine Angew. Math.
81
,
33
61
(
1876
), (Contributions to the theory of bending of a cylinder).
37.
L.
Pochhammer
, “
Über die Fortpflanzungsgeschwindigkeiten kleiner Schwingungen in einem unbegrenzten isotropen Kreiszylinder
,”
J. Reine Angew. Math.
81
,
324
336
(
1876
), (On the propagation velocity of small vibrations in an infinite isotropis cylinder).
38.
J.
Miklowitz
,
The Theory of Elastic Waves and Waveguides
(
North-Holland
,
Amsterdam
,
1978
).
You do not currently have access to this content.