This paper presents the development of an acoustic energy harvester using an electromechanical Helmholtz resonator (EMHR). The EMHR consists of an orifice, cavity, and a piezoelectric diaphragm. Acoustic energy is converted to mechanical energy when sound incident on the orifice generates an oscillatory pressure in the cavity, which in turns causes the vibration of the diaphragm. The conversion of acoustic energy to electrical energy is achieved via piezoelectric transduction in the diaphragm of the EMHR. Moreover, the diaphragm is coupled with energy reclamation circuitry to increase the efficiency of the energy conversion. Lumped element modeling of the EMHR is used to provide physical insight into the coupled energy domain dynamics governing the energy reclamation process. The feasibility of acoustic energy reclamation using an EMHR is demonstrated in a plane wave tube for two power converter topologies. The first is comprised of only a rectifier, and the second uses a rectifier connected to a flyback converter to improve load matching. Experimental results indicate that approximately 30 mW of output power is harvested for an incident sound pressure level of 160dB with a flyback converter. Such power level is sufficient to power a variety of low power electronic devices.

1.
R. E.
Motsinger
and
R. E.
Kraft
, “
Design and performance of duct acoustic treatment
,” in
Aeroacoustics of Flight Vehicles: Theory and Practice Volume 2: Noise Control
, edited by
H. H.
Hubbard
(
Acoustical Society of America
,
New York
,
1995
), Chap. 14, pp.
165
206
.
2.
J. M.
De Bedout
,
M. A.
Franchek
,
R. J.
Bernhard
, and
L.
Mongeau
, “
Adaptive-passive noise control with self-tuning Helmholtz resonators
,”
J. Sound Vib.
202
,
109
123
(
1997
).
3.
X. D.
Jing
and
X. F.
Sun
, “
Experimental investigations of perforated liner with bias flow
,”
J. Acoust. Soc. Am.
106
,
2436
2441
(
1999
).
4.
M. A.
Galland
,
B.
Mazeaud
, and
N.
Sellen
, “
Hybrid passive/active absorbers for flow ducts
,”
Appl. Acoust.
66
,
691
708
(
2005
).
5.
D.
Royer
and
E.
Dieulesaint
,
Elastic Waves in Solids
(
Springer
,
Germany
,
2000
), Vol.
1
, pp.
147
152
.
6.
E.
Hausler
and
E.
Stein
, “
Implantable physiological power supply with PVDF film
,”
Ferroelectrics
60
,
277
282
(
1984
).
7.
M.
Umeda
,
K.
Nakamura
, and
S.
Ueha
, “
Energy storage characteristics of a piezo-generator using impact induced vibrations
,”
Jpn. J. Appl. Phys., Part 1
36
,
3146
3151
(
1997
).
8.
J.
Kymissis
,
D.
Kendall
,
J.
Paradiso
, and
N.
Gershenfeld
, “
Parasitic power harvesting in shoes
,”
Proceedings of the Second IEEE International Symposium on Wearable Computers
, October 19–20,
132
139
(
1998
).
9.
N. S.
Shenck
and
J. A.
Paradiso
, “
Energy scavenging with shoe-mounted piezoelectrics
,”
IEEE Micro.
21
(
3
),
30
42
(
2001
).
10.
M. J.
Ramsay
and
W. W.
Clark
, “
Piezoelectric energy harvesting for bio MEMS applications
,” in
Proceedings of Smart Structures and Materials 2001: Industrial and Commercial Applications of Smart Structures Technologies
. Newport Beach, CA (
2001
).
11.
P.
Glynne-Jones
,
S. P.
Beeby
, and
N. M.
White
, “
Towards a piezoelectric vibration powered microgenerator
,”
IEEE Proc. Sci. Meas. Technol.
148
,
68
72
(
2001
).
12.
A.
Kasyap
,
J.
Lim
,
D.
Johnson
,
S. B.
Horowitz
,
T.
Nishida
,
K.
Ngo
,
M.
Sheplak
, and
L.
Cattafesta
, “
Energy reclamation from a vibrating piezoceramic composite beam
,” Paper No. 271,
Proceedings of 9th International Congress on Sound and Vibration
, Orlando, FL (
2002
).
13.
S.
Roundy
,
P. K.
Wright
, and
J.
Rabaey
, “
A study of low level vibrations as a power source for wireless sensor nodes
,”
Comput. Commun.
26
,
1131
1144
(
2003
).
14.
A.
Bayrashev
,
W. P.
Robbins
, and
B.
Ziaie
, “
Low frequency wireless powering of microsystems using piezoelectric-magnetostrictive laminate composites
,”
Sens. Actuators, A
114
,
244
249
(
2004
).
15.
S.
Kim
,
W. W.
Clark
, and
Q.-M.
Wang
, “
Piezoelectric energy harvesting with a clamped circular plate: Experimental study
,”
J. Intell. Mater. Syst. Struct.
16
(
10
),
855
863
(
2005
).
16.
Y. B.
Jeon
,
R.
Sood
,
J.-h.
Jeong
, and
S. G.
Kim
, “
MEMS power generator with transverse mode thin film PZT
,”
Sens. Actuators, A
122
,
16
22
(
2005
).
17.
S. B.
Horowitz
,
M.
Sheplak
,
L.
Cattafesta
, and
T.
Nishida
, “
A MEMS acoustic energy harvester
,”
J. Micromech. Microeng.
16
,
S174
S181
(
2006
).
18.
M.
Sheplak
,
L.
Cattafesta
,
T.
Nishida
, and
S. B.
Horowitz
, “
Electromechanical acoustic liner
,” U.S. Patent No. 6,782,109 (
2004
).
19.
F.
Liu
,
S. B.
Horowitz
,
T.
Nishida
,
L.
Cattafesta
, and
M.
Sheplak
, “
A multiple degree of freedom electromechanical Helmholtz resonator
,”
J. Acoust. Soc. Am.
122
,
291
301
(
2007
).
20.
R. A.
Manglarotty
, “
Acoustic-lining concepts and materials for engine ducts
,”
J. Acoust. Soc. Am.
48
,
783
794
(
1973
).
21.
S.
Kadirvel
,
F.
Liu
,
S. B.
Horowitz
,
T.
Nishida
,
L.
Cattafesta
, and
M.
Sheplak
, “
A self-powered wireless active acoustic liner
,” AIAA Paper No. 2006–2400, in
12th AIAA/CEAS Aeroacoustics Conference
, Cambridge, MA (
2006
).
22.
M.
Rossi
,
Acoustics and Electroacoustics
(
Artech
,
Norwood, MA
,
1988
), pp.
245
373
.
23.
S. B.
Horowitz
,
T.
Nishida
,
L.
Cattafesta
, and
M.
Sheplak
, “
Characterization of a compliant-backplate Helmholtz resonator for an electromechanical acoustic liner
,”
Int. J. Aeroacoust.
1
,
183
205
(
2002
).
24.
S.
Prasad
,
Q.
Gallas
,
S.
Horowitz
,
B.
Homeijer
,
B.
Sankar
,
L.
Cattafesta
, and
M.
Sheplak
, “
An analytical electroacoustic model of a piezoelectric composite circular plate
,”
AIAA J.
44
(
10
),
2311
2318
(
2006
).
25.
L.
Meirovitch
,
Fundamentals of Vibrations
(
McGraw-Hill
,
New York
,
2001
), pp.
94
98
.
26.
G. K.
Ottman
,
H. F.
Hofmann
, and
G. A.
Lesieutre
, “
Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode
,”
IEEE Trans. Power Electron.
18
(
2
),
696
703
(
2003
).
27.
Y. C.
Shu
and
I. C.
Lien
, “
Analysis of power output for piezoelectric energy harvesting systems
,”
Smart Mater. Struct.
15
(
6
),
1499
1512
(
2006
).
28.
J.
Chen
and
K. D. T.
Ngo
, “
Alternate forms of the PWM switch model in discontinuous conduction mode
,”
IEEE Trans. Aerosp. Electron. Syst.
37
(
2
),
754
758
(
2001
).
29.
R.
Taylor
,
F.
Liu
,
S. B.
Horowitz
,
K.
Ngo
,
T.
Nishida
,
L.
Cattafesta
, and
M.
Sheplak
, “
Technology development for electromechanical acoustic liners
,” Paper A04–093, in Active 04. Williamsburg, VA,
2004
.
30.
ASTM-E1050-98, “
Impedance and absorption of acoustical materials using a tube, two microphones, and a digital frequency analysis system
,” ASTM International.
31.
T.
Schultz
,
M.
Sheplak
, and
L.
Cattafesta
, “
Uncertainty analysis of the two-microphone method
,”
J. Sound Vib.
304
,
91
109
(
2007
).
32.
Synopsys, Inc.,
Syber Sketch User Guide
(
Synopsys
,
Mountain View, CA
,
2005
).
You do not currently have access to this content.