In this paper, the question of the acoustical determination of macroscopic thermal parameters used to describe heat exchanges in rigid open-cell porous media subjected to acoustical excitations is addressed. The proposed method is based on the measurement of the dynamic bulk modulus of the material, and analytical inverse solutions derived from different semiphenomenological models governing the thermal dissipation of acoustic waves in the material. Three models are considered: (1) Champoux–Allard model [J. Appl. Phys.20, 19751979 (1991)] requiring knowledge of the porosity and thermal characteristic length, (2) Lafarge et al. model [J. Acoust. Soc. Am.102, 19952006 (1997)] using the same parameters and the thermal permeability, and (3) Wilson model [J. Acoust. Soc. Am.94, 11361145 (1993)] that requires two adjusted parameters. Except for the porosity that is obtained from direct measurement, all the other thermal parameters are derived from the analytical inversion of the models. The method is applied to three porous materials—a foam, a glass wool, and a rock wool—with very different thermal properties. It is shown that the method can be used to assess the validity of the descriptive models for a given material.

1.
R.
Panneton
and
X.
Olny
, “
Acoustical determination of the parameters governing viscous dissipation in porous media
,”
J. Acoust. Soc. Am.
119
,
2027
2040
(
2006
).
2.
Y.
Champoux
and
J.-F.
Allard
, “
Dynamic tortuosity and bulk modulus in air-saturated porous media
,”
J. Appl. Phys.
70
,
1975
1979
(
1991
).
3.
J.-F.
Allard
,
Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials
(
Elsevier Applied Science
,
New York
,
1993
).
4.
D.
Lafarge
,
P.
Lemarinier
,
J.-F.
Allard
, and
V.
Tarnow
, “
Dynamic compressibility of air in porous structures at audible frequencies
,”
J. Acoust. Soc. Am.
102
,
1995
2006
(
1997
).
5.
D. K.
Wilson
, “
Relaxation-matched modeling of propagation through porous media, including fractal pore structure
,”
J. Acoust. Soc. Am.
94
,
1136
1145
(
1993
).
6.
Y.
Atalla
and
R.
Panneton
, “
Inverse acoustical characterization of open-cell porous media using impedance tube measurements
,”
Can. Acoust.
33
,
11
24
(
2005
).
7.
R.
Panneton
, “
Comments on the limp frame equivalent fluid model for porous media
,”
J. Acoust. Soc. Am.
122
,
EL217
EL222
(
2007
).
8.
M. A.
Biot
, “
The theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range
,”
J. Acoust. Soc. Am.
28
,
168
178
(
1956
).
9.
M. A.
Biot
, “
The theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher-frequency range
,”
J. Acoust. Soc. Am.
28
,
179
191
(
1956
).
10.
D. L.
Johnson
,
J.
Koplik
, and
R.
Dashen
, “
Theory of dynamic permeability and tortuosity in fluid-saturated porous media
,”
J. Fluid Mech.
176
,
379
402
(
1987
).
11.
D.
Lafarge
, “
Sound propagation in porous materials having a rigid frame saturated by gas
,” (in French), Ph.D. dissertation,
Université du Maine
, France,
1993
.
12.
S. R.
Pride
,
F. D.
Morgan
, and
A. F.
Gangi
, “
Drag forces of porous-medium acoustics
,”
Phys. Rev. B
47
,
4964
4975
(
1993
).
13.
Y.
Champoux
,
M. R.
Stinson
, and
G. A.
Daigle
, “
Air-based system for the measurement of the porosity
,”
J. Acoust. Soc. Am.
89
,
910
916
(
1990
).
14.
T.
Iwase
,
Y.
Izumi
, and
R.
Kawabata
, “
A new measuring method for sound propagation constant by using sound tube without any air spaces back of a test material
,” paper presented at Internoise 98, Christchurch, New Zealand,
1998
.
15.
O. C.
Zwikker
and
C. W.
Kosten
,
Sound-Absorbing Materials
(
Elsevier
,
Amsterdam
,
1949
).
16.
D.
Pilon
,
R.
Panneton
, and
F.
Sgard
, “
Behavioral criterion quantifying the edge-constrained effects on foams in the standing wave tube
,”
J. Acoust. Soc. Am.
114
,
1980
1987
(
2003
).
17.
D.
Pilon
,
R.
Panneton
, and
F.
Sgard
, “
Frame acoustical excitability: A decoupling criterion for poroelastic materials
,” Proceedings of Euronoise, Naples, Italy,
2003
.
18.
D. K.
Wilson
, “
Simple, relaxational models for the acoustical properties of porous media
,”
Appl. Acoust.
50
,
171
188
(
1997
).
You do not currently have access to this content.