The aim of this paper is to investigate the acoustic performance of sound absorbing materials through a numerical wave based prediction technique. The final goal of this work is to get insight into the acoustic behavior of a combination of sound absorbing patches. In order to address a wide frequency range, a model based on the Trefftz approach is adopted. In this approach, the dynamic field variables are expressed in terms of global wave function expansions that satisfy the governing dynamic equations exactly. Therefore, approximation errors are associated only with the boundary conditions of the considered problem. This results in a computationally efficient technique. The main advantage of this method is the fact that the sound absorbing patches do not have to be locally reacting. In this article, the wave based method is described and experimentally validated for the case of normal incidence sound absorption identification in a standing wave tube. Afterwards, the method is applied to simulate some interesting setups of absorbing materials.

1.
J. F.
Allard
,
Propagation of Sound in Porous Media, Modeling of Sound Absorbing Materials
(
Elsevier
, Amsterdam,
1999
).
2.
M. A.
Biot
, “
The theory of propagation of elastic waves in a fluid-saturated porous solid
,”
J. Acoust. Soc. Am.
28
,
2495
2510
(
1956
).
3.
X.
Olny
and
C.
Boutin
, “
Acoustic wave propagation in double porosity media
,”
J. Acoust. Soc. Am.
114
(
1
),
73
89
(
2003
).
4.
N.
Atalla
,
F.
Sgard
,
X.
Olny
, and
R.
Panneton
, “
Acoustic absorption of macro-perforated porous materials
,”
J. Sound Vib.
243
(
4
),
659
678
(
2001
).
5.
F.
Sgard
,
X.
Olny
, and
N.
Atalla
, “
On the use of perforations to improve the sound absorption of porous materials
,”
Appl. Acoust.
66
(
6
),
625
651
(
2005
).
6.
N.
Atalla
,
R.
Panneton
, and
P.
Debergue
, “
A mixed displacement-pressure formulation for poroelastic materials
,”
J. Acoust. Soc. Am.
104
(
3
),
1444
1452
(
1998
).
7.
C.
Boutin
, “
Dynamique des milieux poreux saturés déformables - Fonctions de Green—Perméamètre dynamique
” (Dynamic behavior of porous saturated deformable media—Greens functions—Dynamic permeameter), Ph.D. thesis,
Université Scientifique
, Technologique et Médicale de Grenoble (
1987
).
8.
O.
Tanneau
,
P.
Lamary
, and
Y.
Chevalier
, “
A boundary element method for porous media
,”
J. Acoust. Soc. Am.
120
(
3
),
1239
1251
(
2006
).
9.
F.
Sgard
, “
Modélisation par éléments finis des structures multi-couches complexes dans le domaine des basses fréquences
” (Finite element modeling of complex multi-layered structures at low frequencies), thesis to demonstrate the capacity of supervising research in science (in French),
INSA of Lyon - University Lyon I
(
2002
).
10.
W.
Desmet
, “
A wave based prediction technique for coupled vibro-acoustic analysis
,” Ph.D. thesis,
K. U. Leuven, retrieved July 17, 2007 from http://www.mech.kuleuven.be/dept/resources/docs/desmet.pdf (
1998
).
11.
W.
Desmet
,
B.
van Hal
,
P.
Sas
, and
D.
Vandepitte
, “
A computationally efficient prediction technique for the steady-state dynamic analysis of coupled vibro-acoustic systems
,”
Adv. Eng. Software
33
,
527
540
(
2002
).
12.
B.
Pluymers
,
W.
Desmet
, and
D.
Vandepitte
, “
Application of an efficient wave-based prediction technique for the analysis of vibro-acoustic radiation problems
,”
J. Comput. Appl. Math.
168
(
1-2
),
353
364
(
2004
).
13.
B.
Pluymers
, “
Wave based modeling methods for steady-state vibro-acoustics
,” Ph.D. thesis,
K. U. Leuven, retrieved July 17, 2007 from http://people.mech.kuleuven.be/~bpluymer/docs/thesis_bpluymers.pdf (
2006
).
14.
X.
Olny
, “
Absorption acoustique des milieux à simple et double porosité. Modélisation et validation expérimentale
” (Acoustic absorption of single and double porosity media. Modeling and experimental validation), Ph.D. thesis,
INSA of Lyon - ENTPE
(
1999
).
15.
P.
Leclaire
,
L.
Kelders
,
W.
Lauriks
,
C.
Glorieux
, and
J.
Thoen
, “
Determination of the viscous characteristic length in air-filled porous materials by ultrasonic attenuation measurements
,”
J. Acoust. Soc. Am.
99
(
4
),
1944
1948
(
1996
).
16.
Z. E. A.
Fellah
,
S.
Berger
,
W.
Lauriks
,
C.
Depollier
,
C.
Aristégui
, and
J.-Y.
Chapelon
, “
Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence
,”
J. Acoust. Soc. Am.
113
(
5
),
2424
2433
(
2003
).
17.
ISO-9053:1991
, “
Acoustics materials for acoustical applications-determination of air-flow resistance
” International Organization for Standardization, Geneva (
1999
).
You do not currently have access to this content.