The objective of this work is to show that the negative dispersion of ultrasonic waves propagating in cancellous bone can be explained by a nonlocal version of Biot’s theory of poroelasticity. The nonlocal poroelastic formulation is presented in this work and the exact solutions for one- and two-dimensional systems are obtained by the method of Fourier transform. The nonlocal phase speeds for solid- and fluid-borne waves show the desired negative dispersion where the magnitude of dispersion is strongly dependent on the nonlocal parameters and porosity. Dependence of the phase speed and attenuation is studied for both porosity and frequency variation. It is shown that the nonlocal parameter can be easily estimated by comparing the theoretical dispersion rate with experimental observations. It is also shown that the modes of Lamb waves show similar negative dispersion when predicted by the nonlocal poroelastic theory.

1.
P.
Laugier
, “
An overview of bone sonometry
,”
International Congress Series
1274
,
23
32
(
2004
).
2.
K. A.
Wear
, “
Group velocity, phase velocity, and dispersion in human calcaneus in vivo
,”
J. Acoust. Soc. Am.
121
,
2431
2437
(
2007
).
3.
P.
Morse
and
K.
Ingard
,
Theoretical Acoustics
(
Princeton University Press
, Princeton, NJ,
1986
), Chap. 9.
4.
R. E.
Strelitzki
,
J. A.
Evans
, and
A.
Clarke
, “
The influence of porosity and pore size on the ultrasonic properties of bone investigated using a phantom material
,”
Osteoporosis Int.
7
,
370
375
(
1996
).
5.
P.
Nicholson
,
G.
Lowet
,
C.
Langton
,
J.
Dequeker
, and
G.
Van der Perre
, “
A comparison of time-domain and frequency-domain approaches to ultrasonic velocity measurement in trabecular bone
,”
Phys. Med. Biol.
41
,
2421
2435
(
1996
).
6.
P.
Droin
,
G.
Berger
, and
P.
Laugier
, “
Velocity dispersion of acoustic waves in cancellous bone
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
45
,
581
592
(
1998
).
7.
K.
Wear
, “
Measurement of phase velocity and group velocity in human calcaneus
,”
Ultrasound Med. Biol.
26
,
641
646
(
2000
).
8.
M.
Kaczmarek
,
J.
Kubik
, and
M.
Pakula
, “
Short ultrasonic waves in cancellous bone
,”
Ultrasonics
40
,
95
100
(
2002
).
9.
P.
Chen
and
T.
Chen
, “
Measurements of acoustic dispersion on calcaneus using split spectrum processing technique
,”
Med. Eng. Phys.
28
,
187
193
(
2006
).
10.
K.
Waters
,
M.
Hughes
,
J.
Mobley
,
G.
Brandenburger
, and
J.
Miller
, “
On the applicability of Kramers–Kronig relations for ultrasonic attenuation obeying a frequency power law
,”
J. Acoust. Soc. Am.
108
,
556
563
(
2000
).
11.
K.
Waters
and
B.
Hoffmeister
, “
Kramers–Kronig analysis of attenuation and dispersion in trabecular bone
,”
J. Acoust. Soc. Am.
118
,
3912
3920
(
2005
).
12.
K.
Marutyan
,
G.
Bretthorst
, and
J.
Miller
, “
Baysian estimation of the underlying bone properties from mixed fast and slow mode ultrasonic signals
,”
J. Acoust. Soc. Am.
121
,
EL8
EL15
(
2006
).
13.
K.
Marutyan
,
M.
Holland
, and
J.
Miller
, “
Anomalous negative dispersion in bone can result from the interference of fast and slow waves
,”
J. Acoust. Soc. Am.
120
,
EL55
EL61
(
2006
).
14.
D.
Bruggeman
, “
Calculation of physical constants from heterogeneous substances
,”
Ann. Phys.
24
,
636
664
(
1935
).
15.
A.
Tarkov
, “
The problem of the anisotropy of elastic properties in rocks
,”
Mater. Vses. N.-I. Geol. In-ta Obsch. Seriya. Sb.
5
,
209
213
(
1940
).
16.
Y.
Riznichenko
, “
Propagation of seismic waves in discrete and heterogenous medium
,”
Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz.
13
,
115
128
(
1949
).
17.
G.
Postma
, “
Wave propagation in a stratified medium
,”
Geophysics
20
,
780
806
(
1955
).
18.
S.
Rytov
, “
Acoustical properties of a finely layered medium
,”
Sov. Phys. Acoust.
2
,
67
80
(
1956
).
19.
L.
Brekhovskikh
,
Waves in Layered Media
, (
Academic
, New York,
1980
), p.
81
.
20.
B.
Gurevich
and
S. L.
Lopatnikov
, “
Velocity and attenuation of elastic waves in finely layered porous rocks
,”
Geophys. J. Int.
121
,
933
947
(
1995
).
21.
B.
Gurevich
, “
Effect of fluid viscosity on elastic wave attenuation in porous rocks
,”
Geophysics
67
,
264
270
(
2002
).
22.
T.
Plona
,
K.
Winkler
, and
M.
Schoenberg
, “
Acoustic waves in alternating fluid/solid layers
,”
J. Acoust. Soc. Am.
81
,
1227
1234
(
1987
).
23.
S.
Lopatnikov
and
A.-D.
Cheng
, “
Variational formulation of fluid infiltrated porous material in thermal and mechanical equilibrium
,”
Mech. Mater.
34
,
685
704
(
2002
).
24.
S.
Lopatnikov
and
A.-D.
Cheng
, “
Macroscopic Lagrangian formulation of poroelasticity with porosity dynamics
,”
J. Mech. Phys. Solids
52
,
2801
2839
(
2004
).
25.
M.
Biot
, “
Theory of propagation of elastic waves in a fluid-saturated porous solid. I. low-frequency range
,”
J. Acoust. Soc. Am.
28
,
168
178
(
1955
).
26.
M.
Biot
, “
Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher-frequency range
,”
J. Acoust. Soc. Am.
28
,
179
191
(
1955
).
27.
A.
Eringen
, “
Theory of nonlocal elasticity and some applications
,”
Res. Mech.
21
,
313
342
(
1987
).
28.
J.
Williams
, “
Ultrasonic wave propagation in cancellous and cortical bone: Prediction of some experimental results by Biot’s theory
,”
J. Acoust. Soc. Am.
91
,
1106
1112
(
1992
).
29.
R.
Artan
and
B.
Altan
, “
Propagation of sv waves in a periodically layered media in nonlocal elasticity
,”
Int. J. Heat Mass Transfer
39
,
5927
5944
(
2002
).
30.
D.
Johnson
,
J.
Koplik
, and
R.
Dashen
, “
Theory of dynamic permeability and tortuosity in fluid-saturated porous media
,”
J. Fluid Mech.
176
,
379
402
(
1987
).
31.
K. A.
Wear
, “
A stratified model to predict dispersion in trabecular bone
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
48
,
1079
1083
(
2001
).
32.
A.
Hosokawa
and
T.
Otani
, “
Ultrasonic wave propagation in bovine cancellous bone
,”
J. Acoust. Soc. Am.
101
,
558
562
(
1997
).
33.
A.
Chakraborty
, “
Wave propagation in anisotropic media with nonlocal elasticity
,”
Int. J. Solids Struct.
44
,
5723
5741
(
2007
).
You do not currently have access to this content.