Recent improvements in the parabolic equation method are combined to extend this approach to a larger class of seismo-acoustics problems. The variable rotated parabolic equation [J. Acoust. Soc. Am.120, 3534

3538
(2006)] handles a sloping fluid-solid interface at the ocean bottom. The single-scattering solution [J. Acoust. Soc. Am.121, 808
813
(2007)
] handles range dependence within elastic sediment layers. When these methods are implemented together, the parabolic equation method can be applied to problems involving variations in bathymetry and the thickness of sediment layers. The accuracy of the approach is demonstrated by comparing with finite-element solutions. The approach is applied to a complex scenario in a realistic environment.

1.
F. B.
Jensen
,
W. A.
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
,
Computational Ocean Acoustics
(
American Institute of Physics
, New York,
1994
), pp.
343
412
.
2.
R. R.
Greene
, “
A high-angle one-way wave equation for seismic wave propagation along rough and sloping interfaces
,”
J. Acoust. Soc. Am.
77
,
1991
1998
(
1985
).
3.
M. D.
Collins
, “
A higher-order parabolic equation for wave propagation in an ocean overlying an elastic bottom
,”
J. Acoust. Soc. Am.
86
,
1459
1464
(
1989
).
4.
B. T. R.
Wetton
and
G. H.
Brooke
, “
One-way wave equations for seisomoacoustic propagation in elastic waveguides
,”
J. Acoust. Soc. Am.
87
,
624
632
(
1990
).
5.
M. D.
Collins
,
“Higher-order Padé approximations for accurate and stable elastic parabolic equations with application to interface wave propagation
,”
J. Acoust. Soc. Am.
89
,
1050
1057
(
1991
).
6.
W.
Jerzak
,
W. L.
Siegmann
, and
M. D.
Collins
, “
Modeling Rayleigh and Stoneley waves and other interface and boundary effects with the parabolic equation
,”
J. Acoust. Soc. Am.
117
,
3497
3503
(
2005
).
7.
E. T.
Küsel
,
W. L.
Siegmann
, and
M. D.
Collins
, “
A single-scattering correction for large contrasts in elastic layers
,”
J. Acoust. Soc. Am.
121
,
808
813
(
2007
).
8.
D. A.
Outing
,
W. L.
Siegmann
,
M. D.
Collins
, and
E. K.
Westwood
, “
Generalization of the rotated parabolic equation to variable slopes
,”
J. Acoust. Soc. Am.
120
,
3534
3538
(
2006
).
9.
K. P.
Bongiovanni
,
M.
Badiey
, and
W. L.
Siegmann
, “
Shallow-water sediment layer structure and composition effects on range-dependent acoustic propagation at the Atlantic Generating Station (AGS) site
,”
J. Acoust. Soc. Am.
98
,
2249
2261
(
1995
).
10.
M.
Zampolli
,
A.
Tesei
,
F. B.
Jensen
,
N.
Malm
, and
J. B.
Blottman
, “
A computationally efficient finite element model with perfectly matched layers applied to scattering from axially symmetric objects
,”
J. Acoust. Soc. Am.
122
,
1472
1485
(
2007
).
11.
M.
Badiey
,
I.
Jaya
, and
A.H.-D.
Cheng
, “
Shallow water acoustic/geoacoustic experiments near the New Jersey Atlantic Generating Station site
,”
J. Acoust. Soc. Am.
96
,
3593
3604
(
1994
).
12.
M.
Badiey
,
K. P.
Bongiovanni
, and
W. L.
Siegmann
, “
Interpretation of frequency-dependent transmission-loss interference patterns
,”
IEEE J. Ocean. Eng.
22
,
219
225
(
1997
).
13.
M.
Jaye
,
M.
Badiey
, and
W. L.
Siegmann
, “
Geoacoustic profile estimation using empirical orthogonal functions for propagation applications
,”
IEEE J. Ocean. Eng.
26
,
795
808
(
2001
).
You do not currently have access to this content.