The temporal spread of modal group arrivals in weakly range-dependent deep ocean environments is considered. It is assumed that the range dependence is sufficiently weak that mode coupling is predominantly local in mode number. The phrase “modal group arrival” is taken here to mean the contribution to a transient wave field corresponding to a fixed mode number. There are three contributions to modal group time spreads which combine approximately in quadrature. These are the reciprocal bandwidth (the minimal pulse width), a deterministic dispersive contribution that is proportional to bandwidth and grows like range r, and a scattering-induced contribution that grows approximately like r32. The latter two contributions are shown to be proportional to the waveguide invariant β, a property of the background sound speed profile. The results presented, based mostly on asymptotic theory, are shown to agree well with full-wave numerical wave field simulations and available exact mode theoretical results. Simulations are shown that correspond approximately to conditions during the LOAPEX acoustic propagation experiment.

1.
J. A.
Mercer
,
R. K.
Andrew
,
B. M.
Howe
, and
J. A.
Colosi
, “
Cruise report: Long-range ocean acoustic propagation experiment (LOAPEX)
,” Technical report, Applied Physics Laboratory, University of Washington,
2005
.
2.
K. E.
Wage
,
A. B.
Baggeroer
, and
J. C.
Preisig
, “
Modal analysis of broadband acoustic receptions at 3515-km range in the North Pacific using short-time Fourier techniques
,”
J. Acoust. Soc. Am.
113
,
801
817
(
2003
).
3.
K. E.
Wage
,
M. A.
Dzieciuch
,
P. F.
Worcester
,
B. M.
Howe
, and
J. A.
Mercer
, “
Mode coherence at megameter ranges in the North Pacific Ocean
,”
J. Acoust. Soc. Am.
117
,
1565
1581
(
2005
).
4.
J. A.
Colosi
and
S. M.
Flatté
, “
Mode coupling by internal waves for multimegameter acoustic propagation in the ocean
,”
J. Acoust. Soc. Am.
100
,
3607
3620
(
1996
).
5.
M. G.
Brown
,
J.
Viechnicki
, and
F. D.
Tappert
, “
On the measurement of modal group time delays in the deep ocean
,”
J. Acoust. Soc. Am.
100
,
2093
2102
(
1996
).
6.
M. G.
Brown
,
F. J.
Beron-Vera
,
I.
Rypina
, and
I. A.
Udovydchenkov
, “
Rays, modes, wave field structure, and wave field stability
,”
J. Acoust. Soc. Am.
117
,
1607
1610
(
2005
).
7.
A. L.
Virovlyansky
,
Ray Theory of Long-Range Sound Propagation in the Ocean
(
Institute of Applied Physics
, Nizhny Novgorod,
2006
) (in Russian).
8.
S. D.
Chuprov
, “
Interference structure of a sound field in a layered ocean
,”
Ocean Acoustics, Current State
(
Nauka
,
Moscow
,
1982
), pp.
71
91
.
9.
G. A.
Grachev
, “
Theory of acoustic field invariants in layered waveguides
,”
Acoust. Phys.
39
,
33
35
(
1993
).
10.
R. A.
Koch
,
C.
Penland
,
P. J.
Vidmar
, and
K. E.
Hawker
, “
On the calculation of normal mode group velocity and attenuation
,”
J. Acoust. Soc. Am.
73
,
820
825
(
1983
).
11.
D. M. F.
Chapman
and
D. D.
Ellis
, “
The group velocity of normal modes
,”
J. Acoust. Soc. Am.
74
,
973
979
(
1983
).
12.
D. S.
Ahluwalia
and
J. B.
Keller
, “
Exact and asymptotic representations of the sound field in a stratified ocean
,” in
Wave Propagation and Underwater Acoustics
(
Springer
, New York,
1977
).
13.
W. H.
Munk
and
C.
Wunsch
, “
Ocean acoustic tomography: Rays and modes
,”
Rev. Geophys. Space Phys.
21
,
777
793
(
1983
).
14.
W. H.
Munk
, “
Sound channel in an exponentially stratified ocean with application to SOFAR
,”
J. Acoust. Soc. Am.
55
,
220
226
(
1974
).
15.
I. I.
Rypina
,
I. A.
Udovydchenkov
, and
M. G.
Brown
, “
A transformation of the environment eliminates parabolic equation phase errors
,”
J. Acoust. Soc. Am.
120
,
1295
1304
(
2006
).
16.
H. K.
Brock
,
R. N.
Buchal
, and
C. W.
Spofford
, “
Modifying the sound-speed profile to improve the accuracy of the parabolic-equation technique
,”
J. Acoust. Soc. Am.
82
,
543
552
(
1977
).
17.
A. L.
Virovlyansky
,
A. Yu.
Kazarova
, and
L. Ya.
Lyubavin
, “
Ray-based description of normal mode amplitudes in a range-dependent waveguide
,”
Wave Motion
42
,
317
334
(
2005
).
18.
E. L.
Murphy
and
J. A.
Davis
, “
Modified ray theory for bounded media
,”
J. Acoust. Soc. Am.
56
,
1747
1760
(
1974
).
19.
A. L.
Virovlyansky
,
A. Yu.
Kazarova
, and
L. Ya.
Lyubavin
, “
Statistical description of chaotic rays in a deep water acoustic waveguide
,”
J. Acoust. Soc. Am.
121
,
2542
2552
(
2007
).
20.
A. L.
Virovlyansky
,
A. Yu.
Kazarova
, and
L. Ya.
Lyubavin
, “
Modal structure of the field under conditions of wave chaos
,” in
Ocean Acoustics, Proceedings of the 11th L. M. Brekhovskikh’s Conference
, Moscow, CEOS,
2006
, pp.
40
43
(in Russian).
21.
A. L.
Virovlyansky
, “
Statistical description of ray chaos in an underwater acoustic waveguide
,”
Acoust. Phys.
51
,
71
80
(
2005
).
22.
J. A.
Colosi
and
M. G.
Brown
, “
Efficient numerical simulation of stochastic internal-wave-induced sound speed perturbation fields
,”
J. Acoust. Soc. Am.
103
,
2232
2235
(
1998
).
23.
I. I.
Rypina
and
M. G.
Brown
, “
On the width of a ray
,”
J. Acoust. Soc. Am.
122
,
1440
1448
(
2007
).
24.
F. J.
Beron-Vera
and
M. G.
Brown
, “
Ray stability in weakly range-dependent sound channels
,”
J. Acoust. Soc. Am.
114
,
123
130
(
2003
).
25.
A. L.
Virovlyansky
, “
Ray travel times at long range in acoustic waveguides
,”
J. Acoust. Soc. Am.
113
,
2523
2532
(
2003
).
26.
F. J.
Beron-Vera
and
M. G.
Brown
, “
Travel time stability in weakly range-dependent sound channels
,”
J. Acoust. Soc. Am.
115
,
1068
1077
(
2004
).
You do not currently have access to this content.