The measurement of high-pressure signals is often hampered by cavitation activity. The usage of a fiber optic probe hydrophone possesses advantages over other hydrophones, yet when measuring in a cavitating liquid large variations in the signal amplitude are found; in particular when the pressure signal recovers back to positive values. With shadowgraphy the wave propagation and cavity dynamics are imaged and the important contributions of secondary shock waves emitted from collapsing cavitation bubbles are revealed. Interestingly, just adding a small amount of acidic acid reduces the cavitation activity to a large extent. With this treatment an altered primary pressure profile which does not force the cavitation bubbles close to fiber tip into collapse has been found. Thereby, the shot-to-shot variations are greatly reduced.

1.
M. R.
Bailey
,
V. A.
Khokhlova
,
O. A.
Sapozhnikov
,
S. G.
Kargl
, and
L. A.
Crum
, “
Physical mechanisms of the therapeutical effect of ultrasound (A review)
,”
Acoust. Phys.
49
,
369
388
(
2003
).
2.
O. A.
Sapoznhnikov
,
A. D.
Maxwell
,
B.
MacConaghy
, and
M. R.
Bailey
, “
A mechanistic analysis of stone fracture in lithotripsy
,”
J. Acoust. Soc. Am.
121
,
1190
1202
(
2007
).
3.
S.
Warden
, “
A new direction for ultrasound therapy in sports medicine
,”
Sports Med.
33
,
95107
(
2003
).
4.
Z.
Xu
,
A.
Ludomirsky
,
L. Y.
Eun
,
T. L.
Hall
,
B. C.
Tran
,
J. B.
Fowlkes
, and
C. A.
Cain
, “
Controlled ultrasound tissue erosion
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
51
,
726
736
(
2004
).
5.
J. E.
Kennedy
,
G. R.
ter Haar
, and
D.
Cranston
, “
High intensity focused ultrasound: Surgery of the future?
,”
Br. J. Radiol.
76
,
590
599
(
2003
).
6.
C. E.
Brennen
,
Cavitation and Bubble Dynamics
(
Oxford University Press
,
Oxford
,
1995
).
7.
C. D.
Ohl
, “
Cavitation inception following shock wave passage
,”
Phys. Fluids
14
,
3512
3521
(
2002
).
8.
J.
Staudenraus
and
W.
Eisenmenger
, “
Fibre-optic probe hydrophone for ultrasonic and shock-wave measurements in water
,”
Ultrasonics
31
,
267
272
(
1993
).
9.
J. E.
Parsons
,
C. A.
Cain
, and
J. B.
Fowlkes
, “
Cost-effective assembly of a basic fiber-optic hydrophone for measurement of high-amplitude therapeutic ultrasound fields
,”
J. Acoust. Soc. Am.
119
,
1432
1440
(
2006
).
10.
J.
Krücker
,
A.
Eisenberg
,
M.
Krix
,
R.
Lötsch
,
M.
Pessel
, and
H.-G.
Trier
, “
Rigid piston approximation for computing the transfer function of an angular response of a fiber-optic hydrophone
,”
J. Acoust. Soc. Am.
107
,
1994
2003
(
2000
).
11.
International Electrotechnical Committee
, “
Ultrasonics—pressure pulse lithotripters—characteristics of fields
,” IEC Standard 61846 (
1998
).
12.
Y. A.
Pishchalnikov
,
O. A.
Sapozhnikov
,
M. R.
Bailey
,
I. V.
Pishchalnikova
,
J. C.
Williams
 Jr.
, and
J. A.
McAteer
, “
Cavitation selectively reduces the negative pressure phase of lithotripter shock pulses
,”
Acoust. Res. Lett. Online
6
,
280
285
(
2005
).
13.
M.
Liebler
,
T.
Dreyer
, and
R. E.
Riedlinger
, “
Nonlinear modeling of interactions between ultrasound and cavitation bubbles
,”
Acta Acust.
1
,
165
167
(
2006
).
14.
M.
Arora
,
C. D.
Ohl
, and
D.
Lohse
, “
Effect of nuclei concentration on cavitation cluster dynamics
,”
J. Acoust. Soc. Am.
121
,
3432
3436
(
2007
).
15.
W.
Eisenmenger
and
R.
Pecha
, “
Eine neue Art von Kavitationskeimen
,” engl. “New Species of Cavitation Nuclei,” In
Fortschritte der Akustik, DAGA’03, Deutsche Gesellschaft für Akustik e.V.
,
842
843
(
2003
).
16.
N.
Bremond
,
M.
Arora
,
C. D.
Ohl
, and
D.
Lohse
, “
Controlled multibubble surface cavitation
,”
Phys. Rev. Lett.
96
,
224501
(
2006
).
17.
G. S.
Settles
,
Schlieren and Shadowgraph Techniques
(
Springer-Verlag
,
Berlin
,
2001
).
You do not currently have access to this content.