High-frequency acoustic scattering techniques have been used to investigate dominant scatterers in mixed zooplankton populations. Volume backscattering was measured in the Gulf of Maine at 43, 120, 200, and 420kHz. Zooplankton composition and size were determined using net and video sampling techniques, and water properties were determined using conductivity, temperature, and depth sensors. Dominant scatterers have been identified using recently developed scattering models for zooplankton and microstructure. Microstructure generally did not contribute to the scattering. At certain locations, gas-bearing zooplankton, that account for a small fraction of the total abundance and biomass, dominated the scattering at all frequencies. At these locations, acoustically inferred size agreed well with size determined from the net samples. Significant differences between the acoustic, net, and video estimates of abundance for these zooplankton are most likely due to limitations of the net and video techniques. No other type of biological scatterer ever dominated the scattering at all frequencies. Copepods, fluid-like zooplankton that account for most of the abundance and biomass, dominated at select locations only at the highest frequencies. At these locations, acoustically inferred abundance agreed well with net and video estimates. A general approach for the difficult problem of interpreting high-frequency acoustic scattering in mixed zooplankton populations is described.

1.
Anderson
,
V. C.
(
1950
). “
Sound scattering from a fluid sphere
,”
J. Acoust. Soc. Am.
22
,
426
431
.
2.
Benfield
,
M. C.
,
Davis
,
C. S.
,
Wiebe
,
P. H.
,
Gallager
,
S. M.
,
Lough
,
R. G.
, and
Copley
,
N. J.
(
1996
). “
Video plankton recorder estimates of copepod, pteropod and larvacean distributions from a stratified region of Georges Bank with comparative measurements from a MOCNESS sampler
,”
Deep-Sea Res., Part II
43
(
7–8
),
1925
1945
.
3.
Benfield
,
M. C.
,
Wiebe
,
P. H.
,
Stanton
,
T. K.
,
Davis
,
C. S.
,
Gallager
,
S. M.
, and
Greene
,
C. H.
(
1998
). “
Estimating the spatial distribution of zooplankton biomass by combining Video Plankton Recorder and single-frequency acoustic data
,”
Deep-Sea Res., Part II
45
(
7
),
1175
1199
.
4.
Benfield
,
M. C.
,
Davis
,
C. S.
, and
Gallager
,
S. M.
(
2000
). “
Estimating the in situ orientation of Calanus finmarchicus on Georges Bank using the Video Plankton Recorder
,”
Plankton Biol. Ecol.
47
(
1
),
69
72
.
5.
Benfield
,
M. C.
,
Lavery
,
A. C.
,
Wiebe
,
P. H.
,
Greene
,
C. H.
,
Stanton
,
T. K.
, and
Copley
,
N. J.
(
2003
). “
Distribution of physonect siphonulae in the Gulf of Maine and their potential as important sources of acoustic scattering
,”
Can. J. Fish. Aquat. Sci.
60
,
759
772
.
6.
Brierley
,
A. S.
,
Ward
,
P.
,
Watkins
,
J. L.
, and
Goss
,
C.
(
1998
). “
Acoustic discrimination of southern ocean zooplankton
,”
Deep-Sea Res., Part II
45
,
1155
1173
.
7.
Brierley
,
A. S.
,
Alexsen
,
B. E.
,
Boyer
,
D. C.
,
Lyman
,
C. P.
,
Didcock
,
C. A.
,
Boyer
,
H. J.
,
Sparks
,
C. A. J.
,
Purcell
,
J. E.
, and
Gibbons
,
M. J.
(
2004
). “
Single target detections of jellyfish
,”
ICES J. Mar. Sci.
61
,
383
393
.
8.
Brooks
,
D. A.
(
1996
). “
Physical oceanography of the shelf and slope seas from Cape Hateras to Georges Bank: A brief overview
,”
The Northeast Shelf Ecosystem: Assessment, Sustainability, and Management
, edited by
K.
Sherman
,
N. A.
Jaworski
, and
T. J.
Smayda
(
Blackwell Science
, Cambridge, MA), Chap. 4.
9.
Burgett
,
R. L.
,
Hebert
,
D.
, and
Oakey
,
N. S.
(
2001
). “
Vertical structure of turbulence on the southern flank of Georges Bank
,”
J. Geophys. Res.
106
(
C10
),
22545
22558
.
10.
Chu
,
D.
,
Foote
,
K. G.
, and
Stanton
,
T. K.
(
1993
). “
Further analysis of target strength measurements of Antarctic krill at 38 and 120kHz: Comparison with deformed cylinder model and inference of orientation distribution
,”
J. Acoust. Soc. Am.
93
,
2985
2988
.
11.
Chu
,
D.
, and
Stanton
,
T. K.
(
1998
). “
Application of pulse compression techniques to broadband acoustic scattering by live individual zooplankton
,”
J. Acoust. Soc. Am.
104
(
1
),
39
55
.
12.
Chu
,
D.
,
Wiebe
,
P. H.
, and
Copley
,
N. J.
(
2000
). “
Inference of material properties of zooplankton from acoustic and resistivity measurements
,”
ICES J. Mar. Sci.
57
,
1128
1142
.
13.
Chu
,
D.
,
Wiebe
,
P. H.
,
Copley
,
N. J.
,
Lawson
,
G. L.
, and
Puvanendran
,
V.
(
2003
). “
Material properties of North Atlantic cod eggs and early-stage larvae and their influence on acoustic scattering
,”
ICES J. Mar. Sci.
60
(
3
),
508
515
.
14.
Chu
,
D.
, and
Wiebe
,
P. H.
(
2005
). “
Measurement of sound-speed and density contrasts of zooplankton in Antarctic waters
,”
ICES J. Mar. Sci.
62
,
818
831
.
15.
Costello
,
J. H.
,
Pieper
,
R. E.
, and
Holliday
,
D. V.
(
1989
). “
Comparison of acoustic and pump sampling techniques for the analysis of zooplankton distributions
,”
J. Plankton Res.
4
(
11
),
703
709
.
16.
David
,
P.
,
Guerin-Ancey
,
O.
,
Oudot
,
G.
, and
Van Cuyck
,
J. P.
(
2001
). “
Acoustic backscattering from salp and target strength estimation
,”
Oceanol. Acta
24
(
5
),
443
451
.
17.
Davis
,
C. S.
, and
Wiebe
,
P. H.
(
1985
). “
Macrozooplankton biomass in a warm-core Gulf Stream ring: Time series changes in size structure, taxonomic composition, and vertical distribution
,”
J. Geophys. Res.
90
,
8871
8882
.
18.
Davis
,
D. S.
,
Gallager
,
S. M.
,
Berman
,
M. S.
,
Haury
,
L. R.
, and
Strickler
,
J. R.
(
1992
). “
The video plankton recorder (VPR): Design and initial results
,”
Adv. Limnol.
36
,
67
81
.
19.
Diachok
,
O.
(
2001
). “
Interpretation of the spectra of energy scattered by dispersed anchovies
,”
J. Acoust. Soc. Am.
110
(
6
),
2917
2923
.
20.
Endo
,
Y.
(
1993
). “
Orientation of Antarctic krill in an aquarium
,”
Nippon Suisan Gakkaishi
59
,
465
468
.
21.
Fielding
,
S.
,
Griffiths
,
G.
, and
Roe
,
H. S. J.
(
2004
). “
The biological validation of ADCP acoustic backscatter through direct comparison with net samples and model predictions based on acoustic-scattering models
,”
ICES J. Mar. Sci.
60
(
2
),
184
200
.
22.
Flagg
,
C. M.
, and
Smith
,
S. L.
(
1989
). “
On the use of the Acoustic Doppler Current profiler to measure zooplankton abundance
,” Deep-Sea Res.,
36
,
455
474
.
23.
Foote
,
K. G.
,
Knudsen
,
H. P.
,
Vestnes
,
G.
,
MacLennan
,
D. N.
, and
Simmonds
,
E. J.
(
1987
). “
Calibration of acoustic instruments for fish-density estimation: A practical guide
,” ICES Cooperative Research Report No. 144.
24.
Foote
,
K. G.
(
1990
). “
Speed of sound in Euphausia superba
,”
J. Acoust. Soc. Am.
87
,
1405
1408
.
25.
Gallager
,
S. M.
,
Davis
,
C. S.
,
Epstein
,
A. W.
,
Solow
,
A.
, and
Beardsley
,
R. C.
(
1996
). “
High-resolution observations of plankton spatial distribution correlated with hydrography in the Great South Channel, Georges Bank
,” Deep-Sea Res., Part I,
43
(
7-8
),
1627
1663
.
26.
Gauthier
,
G.
, and
Rose
,
G. A.
(
2002
). “
In situ target strength studies on Atlantic redfish (Sebastes spp.)
,”
ICES J. Mar. Sci.
59
,
805
815
.
27.
Goodman
,
L.
(
1990
). “
Acoustic scattering from ocean microstructure
,”
J. Geophys. Res.
95
,
11557
11573
.
28.
Goodman
,
R. R.
, and
Stern
,
R.
(
1962
). “
Reflection and transmission of sound by elastic spherical shells
,”
J. Acoust. Soc. Am.
34
(
3
),
338
344
.
29.
Gregg
,
M.
(
1987
). “
Diapycnal mixing in the thermocline: A review
,”
J. Geophys. Res.
92
,
5249
5286
.
30.
Haury
,
L. R.
,
McGowan
,
J. A.
, and
Wiebe
,
P. H.
(
1978
). “
Patterns and processes in the time-space scales of plankton distribution
,” in
Spatial Pattern in Plankton Communities
, edited by
J. H.
Steele
(
Plenum
, New York), pp.
277
327
.
31.
Holliday
,
D. V.
, and
Pieper
,
R. E.
(
1980
). “
Volume scattering strengths and zooplankton distributions at acoustic frequencies between 0.5 and 3MHz
,”
J. Acoust. Soc. Am.
67
(
1
),
135
146
.
32.
Holliday
,
D. V.
, and
Pieper
,
R. E.
(
1995
). “
Bioacoustical oceanography at high frequencies
,”
ICES J. Mar. Sci.
52
,
279
296
.
33.
Iida
,
K.
,
Takahashi
,
R.
,
Tang
,
Y.
,
Mikua
,
T.
, and
Sato
,
M.
(
2006
). “
Observations of marine animals using an underwater acoustic camera
,”
Jpn. J. Appl. Phys., Part 1
45
,
4875
4881
.
34.
Kils
,
U.
(
1981
). “
Swimming behavior, swimming performance and energy balance of Antarctic krill Euphausia superba
,”
BIOMASS Sci. Series
3
,
1
22
.
35.
Kloser
,
R. J.
(
1996
). “
Improved precision of acoustic surveys of benthopelagic fish by means of a deep-towed transducer
,”
ICES J. Mar. Sci.
54
,
407
413
.
36.
Kloser
,
R. J.
,
Ryan
,
T.
,
Sakov
,
P.
, and
Koslow
,
J. A.
(
2002
). “
Species identification in deep water using multiple acoustic frequencies
,”
Can. J. Fish. Aquat. Sci.
59
,
1065
1077
.
37.
Korneliussen
,
R. J.
(
2000
). “
Measurement and removal of echo integration noise
,”
ICES J. Mar. Sci.
57
,
1204
1217
.
38.
Korneliussen
,
R. J.
, and
Ona
E.
(
2002
). “
An operational system for processing and visualizing multi-frequency acoustic data
,”
ICES J. Mar. Sci.
59
,
293
313
.
39.
Lalli
,
C. M.
, and
Gilmer
,
R. W.
(
1989
).
Pelagic Snails: The Biology of Holoplanktonic Gastropod Mollusks
(
Stanford University Press
, Stanford, CA).
40.
Lascara
,
C. M.
,
Hofmann
,
E. E.
,
Ross
,
R. M.
, and
Quetin
,
L. B.
(
1999
). “
Seasonal variability in the distribution of Antarctic krill, Euphausia superba, west of the Antarctic Peninsula
,”
Deep-Sea Res., Part I
46
,
951
984
.
41.
Lavery
,
A. C.
,
Stanton
,
T. K.
,
McGehee
,
D.
, and
Chu
,
D.
(
2001
). “
Three-dimensional modeling of acoustic backscattering from fluid-like zooplankton
,”
J. Acoust. Soc. Am.
111
(
3
),
1197
1210
.
42.
Lavery
,
A. C.
,
Schmitt
,
R. W.
, and
Stanton
,
T. K.
(
2003
). “
High-frequency acoustic scattering from turbulent oceanic microstructure: The importance of density fluctuations
,”
J. Acoust. Soc. Am.
114
(
5
),
2685
2697
.
43.
Lawson
,
G. L.
,
Wiebe
,
P. H.
,
Ashjian
,
C. J.
,
Gallager
,
S. M.
,
Davis
,
C. S.
, and
Warren
,
J. D.
(
2004
). “
Acoustically-inferred zooplankton distribution in relation to hydrography west of the antarctic peninsula
,”
Deep-Sea Res., Part II
51
,
2041
2072
.
44.
Lawson
,
G. L.
,
Wiebe
,
P. H.
,
Ashjian
,
C. J.
,
Chu
,
D.
, and
Stanton
,
T. K.
(
2006
). “
Improved parameterization of Antarctic krill target strength models
,”
J. Acoust. Soc. Am.
119
(
1
),
232
242
.
45.
Mair
,
A. M.
,
Fernandes
,
P. G.
,
Lebourges-Dhaussy
,
A.
, and
Brierley
,
A. S.
(
2005
). “
An investigation into the zooplankton composition of a prominent 38kHz scattering layer in the North Sea
,”
J. Plankton Res.
27
(
7
),
623
633
.
46.
McGehee
,
D. E.
,
O’Driscoll
,
R. L.
, and
Traykovski
,
L. V. M.
(
1998
). “
Effects of orientation on acoustic scattering from Antarctic krill at 120kHz
,”
Deep-Sea Res., Part II
45
(
7
),
1273
1294
.
47.
Miyashita
,
K.
,
Aoki
,
I.
, and
Inagaki
,
T.
(
1996
). “
Swimming behaviours and target strength of isada krill (Euphausia pacifica)
,”
ICES J. Mar. Sci.
53
,
303
308
.
48.
Monger
,
B. C.
,
Chinniah-Chandy
,
S.
,
Meir
,
E.
,
Billings
,
S.
,
Greene
,
C. H.
, and
Wiebe
,
P. H.
(
1998
). “
Sound scattering by the gelatinous zooplankters Aequorea victoria and Pleurobrachia bachei
,”
Deep-Sea Res., Part II
45
(
7
),
1255
1271
.
49.
Mutlu
,
E.
(
1996
). “
Target strength of the common jellyfish (Aurelia aurita): A preliminary experimental study with a dual-beam acoustic system
,”
ICES J. Mar. Sci.
53
(
2
),
309
311
.
50.
Napp
,
J. M.
,
Ortner
,
P. B.
,
Pieper
,
R. E.
, and
Holliday
,
D. V.
(
1993
). “
Biovolume-size spectra of epipelagic zooplankton using a multi-frequency Acoustic Profiling System (MAPS)
,”
Deep-Sea Res., Part I
40
(
3
),
445
459
.
51.
Oakey
,
N. S.
(
1982
). “
Determination of the rate of turbulent energy from simultaneous temperature and shear microstructure measurements
,”
J. Phys. Oceanogr.
12
,
256
271
.
52.
Ortner
,
P. B.
,
Cummings
,
S. R.
,
Aftring
,
R. P.
, and
Edgerton
,
H. E.
(
1979
). “
Silhouette photography of oceanic zooplankton
,”
Nature (London)
277
,
50
51
.
53.
Pershing
,
A. J.
,
Wiebe
,
P. H.
,
Manning
,
J. P.
, and
Copley
,
N. J.
(
2001
). “
Evidence for vertical circulation cells in the well-mixed area of Georges Bank and their biological implication
,”
Deep-Sea Res., Part II
48
(
1-3
),
283
310
.
54.
Pieper
,
R. E.
,
Holliday
,
D. V.
, and
Kleppel
,
G. S.
(
1990
). “
Quantitative zooplankton distributions from multifrequency acoustics
,”
J. Plankton Res.
12
(
2
),
443
441
.
55.
Pieper
,
R. E.
,
McGehee
,
D. E.
,
Greenlaw
,
C. F.
, and
Holliday
,
D. V.
(
2001
). “
Acoustically measured seasonal patterns of zooplankton in the Arabian sea
,”
Deep-Sea Res., Part II
48
(
6-7
),
1325
1343
.
56.
Ressler
,
P.
(
2002
). “
Acoustic backscatter measurements with a 153 kHz ADCP in the northeastern Gulf of Mexico: Determination of dominant zooplankton and micronekton scatterers
,”
Deep-Sea Res., Part I
49
,
2035
2051
.
57.
Ross
,
T.
, and
Lueck
,
R.
(
2003
). “
Sound scattering from oceanic turbulence
,”
Geophys. Res. Lett.
30
(
6
),
1344
.
58.
Ross
,
T.
,
Garrett
,
C.
, and
Lueck
,
R.
(
2004
). “
On the turbulent co-spectrum of two scalars and its effect on the acoustic scattering from oceanic turbulence
,”
J. Fluid Mech.
514
,
107
119
.
59.
Rothschild
,
B. J.
, and
Osborn
,
T. R.
(
1988
). “
Small-scale turbulence and plankton contact rates
,”
J. Plankton Res.
10
,
465
474
.
60.
Seim
,
H. E.
,
Gregg
,
M. C.
, and
Miyamoto
,
R. T.
(
1995
). “
Acoustic backscatter from turbulent microstructure
,”
J. Atmos. Ocean. Technol.
12
(
2
),
367
380
.
61.
Seim
,
H. E.
(
1999
). “
Acoustic backscatter from salinity microstructure
,”
J. Atmos. Ocean. Technol.
16
(
11
),
1491
1498
.
62.
Seuront
,
L.
,
Schmitt
,
F.
, and
Lagadeuc
,
Y.
(
2001
). “
Turbulence intermittency, small-scale phytoplankton patchiness and encounter rates in plankton: Where do we go from here?
Deep-Sea Res., Part I
48
(
5
),
1199
1215
.
63.
Stanton
,
T. K.
(
1989
). “
Simple approximate formulas for backscattering of sound by spherical and elongated objects
,”
J. Acoust. Soc. Am.
86
(
4
),
1499
1510
.
64.
Stanton
,
T. K.
,
Chu
,
D.
,
Wiebe
,
P. H.
, and
Clay
,
C. S.
(
1993
). “
Average echoes from randomly oriented random-length finite cylinders: Zooplankton models
,”
J. Acoust. Soc. Am.
94
,
3463
3472
.
65.
Stanton
,
T. K.
,
Wiebe
,
P. H.
,
Chu
,
D.
,
Benfield
,
M. C.
,
Scanlon
,
L.
,
Martin
,
L.
, and
Eastwood
,
R. L.
(
1994
). “
On acoustic estimates of zooplankton biomass
,”
ICES J. Mar. Sci.
51
,
505
512
.
66.
Stanton
,
T. K.
,
Chu
,
D.
,
Wiebe
,
P. H.
,
Martin
,
L. V.
, and
Eastwood
,
R. L.
(
1998a
). “
Sound scattering by several zooplankton groups. I. Experimental determination of dominant scattering mechanisms
,”
J. Acoust. Soc. Am.
103
(
1
),
225
235
.
67.
Stanton
,
T. K.
,
Chu
,
D.
, and
Wiebe
,
P. H.
(
1998b
). “
Sound scattering by several zooplankton groups. II. Scattering models
,”
J. Acoust. Soc. Am.
103
(
1
),
236
253
.
68.
Stanton
,
T. K.
, and
Chu
,
D.
(
2000
). “
Review and recommendations for the modeling of acoustic scattering by fluid-like elongated zooplankton: Euphausiids and copepods
,”
ICES J. Mar. Sci.
57
,
793
807
.
69.
Stanton
,
T. K.
,
Chu
,
D.
,
Wiebe
,
P. H.
,
Eastwood
,
R. L.
, and
Warren
,
J. D.
(
2000
). “
Acoustic scattering by benthic and planktonic shelled animals
,”
J. Acoust. Soc. Am.
108
(
2
),
535
550
.
70.
Thorpe
,
S. A.
(
1977
). “
Turbulence and mixing in a Scottish loch
,”
Philos. Trans. R. Soc. London, Ser. A
286
,
125
181
.
71.
Thorpe
,
S. A.
, and
Brubaker
,
J. M.
(
1983
). “
Observations of sound reflection by temperature microstrucure
,”
Limnol. Oceanogr.
28
,
601
613
.
72.
Trevorrow
,
M. V.
, and
Tanaka
,
Y.
(
1997
). “
Acoustic and in situ measurements of freshwater amphipods (Jesogammarus annandalei) in Lake Biwa, Japan
,”
Limnol. Oceanogr.
42
(
1
),
121
132
.
73.
Trevorrow
,
M. V.
,
Mackas
,
D. L.
, and
Benfield
,
M. C.
(
2005
). “
Comparison of multifrequency acoustic and in situ measurements of zooplankton abundance in Knight Inlet, British Columbia
,”
J. Acoust. Soc. Am.
117
(
6
),
3574
3588
.
74.
Warren
,
J. D.
,
Stanton
,
T. K.
,
Benfield
,
M. C.
,
Wiebe
,
P. H.
,
Chu
,
D.
, and
Sutor
,
M.
(
2001
). “
In situ measurements of acoustic target strength of gas-bearing siphonophores
,”
ICES J. Mar. Sci.
58
,
740
749
.
75.
Warren
,
J. D.
(
2001
). “
Estimating Gulf of Maine zooplankton distributions using multiple frequency acoustics, video, and environmental data
,” Ph.D. thesis,
MIT/WHOI
, Cambridge, MA,
2001
2003
.
76.
Warren
,
J. D.
,
Stanton
,
T. K.
,
Wiebe
,
P. H.
, and
Seim
,
H. E.
(
2003
). “
Inference of biological and physical parameters in an internal wave using multiple-frequency, acoustic-scattering data
,”
ICES J. Mar. Sci.
60
(
5
),
1033
1046
.
77.
Weston
,
D. E.
(
1967
). “
Sound propagation in the presence of bladder fish
,” in
Underwater Acoustics
, edited by
V.
Albers
(
Plenum
, New York), Vol.
2
, Chap. 5, pp.
55
88
.
78.
Wiebe
,
P. H.
,
Morton
,
A. W.
,
Bradley
,
A. M.
,
Backus
,
R. H.
,
Craddock
,
J. E.
,
Barber
,
V.
,
Cowles
,
T. J.
, and
Flierl
,
G. R.
(
1985
). “
New developments in the MOCNESS, an apparatus for sampling zooplankton and micronekton
,”
Mar. Biol. (Berlin)
87
(
3
),
313
323
.
79.
Wiebe
,
P. H.
,
Mountain
,
D. G.
,
Stanton
,
T. K.
,
Greene
,
C. H.
,
Lough
,
G.
,
Kaartvedt
,
S.
,
Dawson
,
J.
, and
Copley
,
N.
(
1996
). “
Acoustical study of the spatial distribution of plankton on Georges Bank and the relationship between volume backscattering strength and the taxonomic composition of the plankton
,”
Deep-Sea Res., Part II
43
(
7-8
),
1971
2001
.
80.
Wiebe
,
P. H.
,
Stanton
,
T. K.
,
Benfield
,
M. C.
,
Mountain
,
D. G.
, and
Greene
,
C. H.
(
1997
). “
High-frequency acoustic volume backscattering in the Georges Bank coastal region and its interpretation using scattering models
,”
IEEE J. Ocean. Eng.
22
(
3
),
445
464
.
81.
Wiebe
,
P. H.
,
Stanton
,
T. K.
,
Greene
,
C. H.
,
Benfield
,
M. C.
,
Sosik
,
H. M.
,
Austin
,
T.
,
Warren
,
J. A.
, and
Hammar
,
T.
(
2002
). “
BIOMAPER II: An integrated instrument platform for coupled biological and physical measurements in coastal and oceanic regimes
,”
IEEE J. Ocean. Eng.
27
,
700
716
.
82.
Wiebe
,
P. H.
,
Ashjian
,
C. J.
,
Gallager
,
S. M.
,
Davis
,
C. S.
,
Lawson
,
G. L.
, and
Copley
,
N. J.
(
2004
). “
Using a high-power strobe light to increase the catch of Antarctic krill
,”
Mar. Biol. (Berlin)
144
,
493
502
.
You do not currently have access to this content.