The assessment of viscoelastic properties of soft tissues is enjoying a growing interest in the field of medical imaging as pathologies are often correlated with a local change of stiffness. To date, advanced techniques in that field have been concentrating on the estimation of the second order elastic modulus (μ). In this paper, the nonlinear behavior of quasi-incompressible soft solids is investigated using the supersonic shear imaging technique based on the remote generation of polarized plane shear waves in tissues induced by the acoustic radiation force. Applying a theoretical approach of the strain energy in soft solid [Hamilton et al., J. Acoust. Soc. Am.116, 4144 (2004)], it is shown that the well-known acoustoelasticity experiment allowing the recovery of higher order elastic moduli can be greatly simplified. Experimentally, it requires measurements of the local speed of polarized plane shear waves in a statically and uniaxially stressed isotropic medium. These shear wave speed estimates are obtained by imaging the shear wave propagation in soft media with an ultrafast echographic scanner. In this situation, the uniaxial static stress induces anisotropy due to the nonlinear effects and results in a change of shear wave speed. Then the third order elastic modulus (A) is measured in agar-gelatin-based phantoms and polyvinyl alcohol based phantoms.

1.
T. A.
Krouskop
,
B. S.
Dougherty
, and
F. S.
Vinson
, “
A pulsed Doppler ultrasonic system for making noninvasive measurements of the mechanical properties of soft tissue
,”
J. Rehabil. Res. Dev.
24
,
1
8
(
1987
).
2.
R. M.
Lerner
,
K. J.
Parker
,
J.
Holen
,
R.
Gramiak
, and
R. C.
Waag
, “
Sono-elasticity: Medical elasticity images derives from ultrasound signals in mechanically vibrated targets
,”
Acoust. Imaging
16
,
317
327
(
1988
).
3.
Y.
Yamakoshi
,
J.
Sato
, and
T.
Sato
, “
Ultrasonic imagins of internal vibration of soft tissue under forced vibration
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
37
,
45
53
(
1990
).
4.
K. J.
Parker
and
R. M.
Lerner
, “
Sonoelasticity of organs: Shearwaves ring a bell
,”
J. Ultrasound Med.
11
,
387
392
(
1992
).
5.
S. F.
Levinson
,
M.
Shinagawa
, and
T.
Sato
, “
Sonoelastic determination of human skeletal muscle elasticity
,”
J. Biomech.
28
,
1145
1154
(
1995
).
6.
J.
Bercoff
,
S.
Chaffaï
,
M.
Tanter
,
L.
Sandrin
,
S.
Catheline
,
M.
Fink
,
J.-L.
Gennisson
, and
M.
Meunier
, “
In vivo breast tumor detection using transient elastography
,”
Ultrasound Med. Biol.
29
,
1387
1396
(
2003
).
7.
L.
Sandrin
,
B.
Fourquet
,
J.-M.
Hasquenoph
,
S.
Yon
,
C.
Fournier
,
F.
Mal
,
C.
Christidis
,
M.
Ziol
,
B.
Poulet
,
F.
Kazemi
,
M.
Beaugrand
, and
R.
Palau
, “
Transient elastography: a new non invasive method for assessment of hepatic fibrosis
,”
Ultrasound Med. Biol.
29
,
1705
1713
(
2003
).
8.
J.-L.
Gennisson
,
S.
Catheline
, and
M.
Fink
, “
Transient elastography in anisotropic medium: application to the measurement of slow and fast shear wave speeds in muscles
,”
J. Acoust. Soc. Am.
114
,
536
541
(
2003
).
9.
S.
Catheline
,
J.-L.
Gennisson
,
G.
Delon
,
R.
Sinkus
,
M.
Fink
,
S.
Abouelkaram
, and
J.
Culioli
, “
Measurement of viscoelastic properties of homogeneous soft solid using transient elastography: An inverse problem approach
,”
J. Acoust. Soc. Am.
116
,
3734
3741
(
2004
).
10.
J.
Bercoff
,
M.
Tanter
,
M.
Muller
, and
M.
Fink
, “
The role of viscosity in the impulse diffraction field of elastic waves induced by the acoustic radiation force
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
51
,
1523
1536
(
2004
).
11.
S.
Catheline
,
J.-L.
Gennisson
, and
M.
Fink
, “
Measurement of elastic nonlinearity of soft solids with transient elastography
,”
J. Acoust. Soc. Am.
114
,
3087
3091
(
2003
).
12.
S.
Catheline
,
J.-L.
Gennisson
,
M.
Tanter
, and
M.
Fink
, “
Observation of shock transverse waves in elastic media
,”
Phys. Rev. Lett.
91
,
43011
43014
(
2003
).
13.
X.
Jacob
,
J.-L.
Gennisson
,
S.
Catheline
,
M.
Tanter
,
C.
Barrière
,
D.
Royer
, and
M.
Fink
, “
Study of elastic nonlinearity of soft solids with transient elastography
,”
Proc.-IEEE Ultrason. Symp.
1
,
660
663
(
2003
).
14.
D. S.
Hugues
and
J. L.
Kelly
, “
Second-order elastic deformation of solids
,”
Phys. Rev.
92
,
1145
1149
(
1953
).
15.
T. D.
Murnaghan
,
Finite Deformation of an Elastic Solid
(
Wiley
, New York,
1951
).
16.
A.
Norris
,
Non Linear Acoustics: Finite Amplitude Waves in Solids
, edited by
M.
Hamilton
(
Academic
, New York,
1998
).
17.
H.
Kobayashi
and
R.
Vanderby
, “
New strain energy function for acoustoelasticity analysis of dilatational waves in nearly incompressible hyper-elastic materials
,”
J. Appl. Mech.
72
,
843
851
(
2005
).
18.
H.
Kobayashi
and
R.
Vanderby
, “
Acoustoelastic analysis of reflected waves in nearly incompressible, hyper-elastic materials: Forward and inverse problem
,”
J. Acoust. Soc. Am.
121
,
879
887
(
2007
).
19.
R. Q.
Erkamp
,
A. R.
Skovoroda
,
S. Y.
Emelianov
, and
M.
O’Donnell
, “
Measuring the nonlinear elastic properties of tissue-like phantoms
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
51
,
410
419
(
2004
).
20.
M. F.
Hamilton
,
Y. A.
Ilinskii
, and
E. A.
Zabolotskaya
, “
Separation of compressibility and shear deformation in the elastic energy density (L)
,”
J. Acoust. Soc. Am.
116
,
41
44
(
2004
).
21.
E. A.
Zabolotskaya
,
M. F.
Hamilton
,
Y. A.
Ilinskii
, and
G. D.
Meegan
, “
Modeling of non linear shear waves in soft solids
,”
J. Acoust. Soc. Am.
116
,
2807
2813
(
2004
).
22.
J.
Bercoff
,
M.
Tanter
, and
M.
Fink
, “
Supersonic shear imaging: a new technique for soft tissues elasticity mapping
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
51
,
374
409
(
2004
).
23.
L. D.
Landau
and
E. M.
Lifshitz
,
Theory of Elasticity
, 3rd ed. (
Butterworth-Heinemann
, Oxford,
2002
).
24.
D.
Royer
and
E.
Dieulesaint
,
Elastic Waves in Solid
(
Springer
, Berlin,
1996
), Vol.
1
.
25.
P. A.
Johnson
and
P.
Rasolofosaon
, “
Nonlinear elasticity and stress-induced anisotropy in rock
,”
J. Geophys. Res.
101
,
3113
3124
(
1995
).
26.
S.
Kostek
,
B. K.
Sinha
, and
A. N.
Norris
, “
Third-order elastic constants for an inviscid fluid
,”
J. Acoust. Soc. Am.
94
,
3014
3017
(
1993
).
27.
R. N.
Thurston
and
K.
Brugger
, “
Third-order elastic constants and the velocity of small amplitude elastic waves in homogeneously stressed media
,”
Phys. Rev.
133
,
A1604
A1610
(
1964
).
28.
J.-L.
Gennisson
and
G.
Cloutier
, “
Sol-gel transition in agar-gelatin mixtures studied with transient elastography
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
53
,
716
723
(
2006
).
29.
J.
Fromageau
,
E.
Brusseau
,
D.
Vray
,
G.
Gimenez
, and
P.
Delachartre
, “
Characterization of PVA cryogel for intravascular ultrasound elasticity imaging
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
50
,
1318
1324
(
2003
).
30.
J.
Fromageau
,
J.-L.
Gennisson
,
C.
Schmitt
,
R.
Maurice
,
R.
Mongrain
, and
G.
Cloutier
, “
Estimation of polyvinyl alcohol cryogel mechanical properties with 4 ultrasound elastography methods and comparison with gold standard testings
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
54
,
498
509
(
2007
).
31.
L.
Sandrin
,
M.
Tanter
,
S.
Catheline
, and
M.
Fink
, “
Shear modulus imaging using 2d transient elastography
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
49
,
426
435
(
2002
).
32.
J.
Ophir
,
I.
Céspedes
,
H.
Ponnekanti
,
Y.
Yasdi
, and
X.
Li
, “
Elastography: a quantitative method for imaging the elasticity of biological soft tissues
,”
Ultrason. Imaging
13
,
111
134
(
1991
).
33.
M. A.
Breazeale
, “
Comparison of the non linear behavior of fluids and solids
,”
Proceedings of the 13th ISNA
,
World Scientific
, Singapore,
1993
, p,
451
.
34.
K.
Naugolnykh
and
L.
Ostrovsky
,
Nonlinear Wave Processes in Acoustics
(
Cambridge University Press
, New York,
1998
), Chap. 1, pp.
15
16
.
35.
C. M.
Hassan
and
N. A.
Peppas
, “
Structure and applications of polyvinyl alcohol hydrogels produced by conventional crosslinking or by freezing/thawing methods
,”
Adv. Polym. Sci.
153
,
37
65
(
2000
).
36.
C.
Joly-Duhamel
,
D.
Hellio
,
A.
Ajdari
, and
M.
Djabourov
, “
All gelatin networks: 2. The master curve for elasticity
,”
Langmuir
18
,
7158
7166
(
2002
).
37.
P. R.
Onck
,
T.
Koeman
,
T.
van Dillen
, and
E.
vander Giessen
, “
Alternative explanation of stiffening in cross-linked semiflexible networks
,”
Phys. Rev. Lett.
95
,
178102
(
2005
).
38.
C.
Storm
,
J. J.
Pastore
,
F. C.
MacKintosh
,
T. C.
Lubensky
, and
P. A.
Janmey
, “
Nonlinear elasticity in biological gels
,”
Nature (London)
435
,
191
194
(
2005
).
39.
R. J.
Wang
,
W. H.
Wang
,
F. Y.
Li
,
L. M.
Wang
,
Y.
Zhang
,
P.
Wen
, and
J. F.
Wang
, “
The Gruneisen parameter for bulk amorphous materials
,”
J. Phys.: Condens. Matter
15
,
603
608
(
2003
).
40.
B.
Zhang
,
R. J.
Wang
, and
W. H.
Wang
, “
Response of acoustic and elastic properties to pressure and crystallization of Ce-based bulk metallic glass
,”
Phys. Rev. B
72
,
104205
(
2005
).
You do not currently have access to this content.