A California sea lion (Zalophus californianus) was tested in a behavioral procedure to assess noise-induced temporary threshold shift (TTS) in air. Octave band fatiguing noise was varied in both duration (1.550min) and level (94133dB re 20μPa) to generate a variety of equal sound exposure level conditions. Hearing thresholds were measured at the center frequency of the noise (2500Hz) before, immediately after, and 24h following exposure. Threshold shifts generated from 192 exposures ranged up to 30dB. Estimates of TTS onset [159dB re (20μPa)2s] and growth (2.5dB of TTS per dB of noise increase) were determined using an exponential function. Recovery for threshold shifts greater than 20dB followed an 8.8dB per log(min) linear function. Repeated testing indicated possible permanent threshold shift at the test frequency, but a later audiogram revealed no shift at this frequency or higher. Sea lions appear to be equally susceptible to noise in air and in water, provided that the noise exposure levels are referenced to absolute sound detection thresholds in both media. These data provide a framework within which to consider effects arising from more intense and/or sustained exposures.

1.
American National Standards Institute
(ANSI). (
1994
). “
Acoustical terminology
,” ANSI S1.1-1994,
R2004
.
2.
Boettcher
,
F. A.
(
2002
). “
Susceptibility to acoustic trauma in young and aged gerbils
,”
J. Acoust. Soc. Am.
112
,
2948
2955
.
3.
Botte
,
M. C.
, and
Monikheim
,
S.
(
1994
). “
New data on the short-term effects of tone exposure
,”
J. Acoust. Soc. Am.
95
,
2598
2605
.
4.
Dixon
,
W. J.
, and
Mood
,
A. M.
(
1948
). “
A method for obtaining and analyzing sensitivity data
,”
J. Am. Stat. Assoc.
43
,
109
126
.
5.
Fernandez
,
A.
,
Edwards
,
J. F.
,
Rodriguez
,
F.
,
de los Monteros
,
A. E.
,
Herraez
,
P.
,
Castro
,
P.
,
Jaber
,
J. R.
,
Martin
,
V.
, and
Arbelo
,
M.
(
2005
). “
‘Gas and fat embolic syndrome’ involving a mass stranding of beaked whales (Family: Ziphiidae) exposed to anthropogenic sonar signals
,”
Vet. Pathol.
42
,
446
457
.
6.
Finneran
,
J.
,
Dear
,
R.
,
Carder
,
D.
, and
Ridgway
,
S.
(
2003
). “
Auditory and behavioral responses of California sea lions (Zalophus californianus) to single underwater impulses from an arc-gap transducer
,”
J. Acoust. Soc. Am.
114
,
1667
1677
.
7.
Finneran
,
J. J.
,
Carder
,
D. A.
,
Schlundt
,
C. E.
, and
Ridgway
,
S. H.
(
2005
). “
Temporary threshold shift in bottlenose dolphins (Tursiops truncatus) exposed to mid-frequency tones
,”
J. Acoust. Soc. Am.
118
,
2696
2705
.
8.
Finneran
,
J. J.
,
Schlundt
,
C. E.
,
Carder
,
D. A.
,
Clark
,
J. A.
,
Young
,
J. A.
,
Gaspin
,
J. B.
, and
Ridgway
,
S. H.
(
2000
). “
Auditory and behavioral responses of bottlenose dolphins (Tursiops truncatus) and a beluga whale (Delphinapterus leucas) to impulsive sounds resembling distant signatures of underwater explosions
,”
J. Acoust. Soc. Am.
108
,
417
431
.
9.
Finneran
,
J. J.
,
Schlundt
,
C. E.
,
Dear
,
R.
,
Carder
,
D. A.
, and
Ridgway
,
S. H.
(
2002
). “
Temporary shift in masked hearing thresholds in odontocetes after exposure to single underwater impulses from a seismic watergun
,”
J. Acoust. Soc. Am.
111
,
2929
2940
.
10.
Frantzis
,
A.
(
1998
). “
Does acoustic testing strand whales?
,”
Nature (London)
392
,
29
.
11.
Holt
,
M. M.
,
Schusterman
,
R. J.
,
Kastak
,
D.
, and
Southall
,
B. L.
(
2005
). “
Localization of aerial puretones in pinnipeds
,”
J. Acoust. Soc. Am.
118
,
3921
3926
.
12.
Humes
,
L. E.
, and
Jesteadt
,
W.
(
1991
). “
Modeling the interactions between noise exposure and other variables
,”
J. Acoust. Soc. Am.
90
,
182
188
.
13.
Kastak
,
D.
, and
Schusterman
,
R.
(
1996
). “
Temporary threshold shift in a harbor seal (Phoca vitulina)
,”
J. Acoust. Soc. Am.
100
,
1905
1908
.
14.
Kastak
,
D.
,
Schusterman
,
R.
,
Southall
,
B.
, and
Reichmuth
,
C.
(
1999
). “
Underwater temporary threshold shift induced by octave-band noise in three species of pinniped
,”
J. Acoust. Soc. Am.
106
,
1142
1148
.
15.
Kastak
,
D.
, and
Schusterman
,
R. J.
(
1998
). “
Low-frequency amphibious hearing in pinnipeds: Methods, measurements, noise, and ecology
,”
J. Acoust. Soc. Am.
103
,
2216
2228
.
16.
Kastak
,
D.
,
Southall
,
B.
,
Schusterman
,
R.
, and
Reichmuth-Kastak
,
C.
(
2005
). “
Underwater temporary threshold shift in pinnipeds: Effects of noise level and duration
,”
J. Acoust. Soc. Am.
118
,
3154
3163
.
17.
Maslen
,
K.
(
1981
). “
Towards a better understanding of temporary threshold shift of hearing
,”
Appl. Acoust.
14
,
281
318
.
18.
Nachtigall
,
P.
,
Supin
,
A.
,
Pawloski
,
J.
, and
Au
,
W.
(
2004
). “
Temporary threshold shifts after noise exposure in the bottlenose dolphin (Tursiops truncatus) measured using evoked auditory potentials
,”
Marine Mammal Sci.
20
,
673
687
.
19.
Nachtigall
,
P. E.
,
Pawloski
,
J. L.
, and
Au
,
W. W.
(
2003
). “
Temporary threshold shifts and recovery following noise exposure in the Atlantic bottlenosed dolphin (Tursiops truncatus)
,”
J. Acoust. Soc. Am.
113
,
3425
3429
.
20.
Schusterman
,
R. J.
,
Southall
,
B. L.
,
Kastak
,
D.
, and
Reichmuth Kastak
,
C.
(
2002
). “
Age-related hearing loss in sea lions and their scientists
,”
J. Acoust. Soc. Am.
111
,
2342
2343
.
21.
Southall
,
B. L.
,
Schusterman
,
R. J.
, and
Kastak
,
D.
(
2003
). “
Auditory masking in three pinnipeds: Aerial critical ratios and direct critical bandwidth measurements
,”
J. Acoust. Soc. Am.
114
,
1660
1666
.
22.
Southall
,
B. L.
,
Schusterman
,
R. J.
,
Kastak
,
D.
, and
Reichmuth Kastak
,
C.
(
2005
). “
Reliability of underwater hearing thresholds in pinnipeds
,”
ARLO
6
,
243
249
.
23.
Spieth
,
W.
, and
Trittipoe
,
W. J.
(
1958
). “
Intensity and duration of noise exposure and temporary threshold shifts
,”
J. Acoust. Soc. Am.
30
,
710
713
.
24.
Ward
,
W. D.
(
1962
). “
Damage-risk criteria for line spectra
,”
J. Acoust. Soc. Am.
34
,
1610
1619
.
25.
Ward
,
W. D.
,
Glorig
,
A.
, and
Sklar
,
D. L.
(
1959
). “
Relation between recovery from temporary threshold shift and duration of exposure
,”
J. Acoust. Soc. Am.
31
,
600
602
.
You do not currently have access to this content.